The Synergistic Effect of CuZnCeOx in Controlling the Formation of Methanol and CO from CO2 Hydrogenation

被引:45
|
作者
Hu, Xiaosong [1 ]
Qin, Wei [1 ]
Guan, Qingxin [1 ]
Li, Wei [1 ,2 ]
机构
[1] Nankai Univ, Coll Chem, State Key Lab Elementoorgan Chem, Key Lab Adv Energy Mat Chem,Minist Educ, Tianjin 300071, Peoples R China
[2] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300071, Peoples R China
关键词
carbon monoxide; CO2; hydrogenation; methanol; metal oxides; CARBON-DIOXIDE HYDROGENATION; SELECTIVE CATALYTIC-REDUCTION; COPPER-BASED CATALYSTS; DIMETHYL ETHER; METAL-OXIDE; AU NANOPARTICLES; ZR CATALYSTS; ACTIVE-SITE; PERFORMANCE; SURFACE;
D O I
10.1002/cctc.201800668
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 hydrogenation will be essential for a sustainable society if methanol and CO can be efficiently obtained using appropriate catalysts. In this paper, a highly efficient CuZnCeOx catalyst was synthesized using a parallel flow coprecipitation method, and was evaluated in CO2 hydrogenation to produce methanol and CO. Interestingly, the catalyst shows excellent activity and stability, and the selectivity of the products can be controlled by the amount of CeOx. Characterization results show that a significant synergistic effect between Cu and metal oxides (ZnO and/or CeOx) was observed at the composite catalysts. Cu plays a critical role in the activation of H-2, and CeOx strongly adsorbs CO2 center dot CeOx improved the dispersion of Cu nanoparticles and promoted the spillover of atomic hydrogen, which was beneficial to the generation of methanol. Meanwhile, ZnO exhibited weak adsorption ability for CO2, which was beneficial for the generation of CO. In addition, ZnO can significantly improve the dispersion of the CeOx nanoparticles. Both the dispersion of active sites and the activation abilities of CO2 are critical for catalyst activity and product selectivity. Thus, the ternary catalyst CuZnCeOx shows higher performance than the binary catalysts (CuZnOx and CuCeOx) in the CO2 hydrogenation reaction. This paper provides a viable way to produce selectively methanol or CO from CO2 hydrogenation.
引用
收藏
页码:4438 / 4449
页数:12
相关论文
共 50 条
  • [21] Hydrogenation of CO2 or CO2 Derivatives to Methanol under Molecular Catalysis: A Review
    Xue, Wenxuan
    Tang, Conghui
    ENERGIES, 2022, 15 (06)
  • [22] Design and simulation of a methanol production plant from CO2 hydrogenation
    Van-Dal, Everton Simoes
    Bouallou, Chakib
    JOURNAL OF CLEANER PRODUCTION, 2013, 57 : 38 - 45
  • [23] Methanol from CO2 by Organo-Cocatalysis: CO2 Capture and Hydrogenation in One Process Step
    Reller, Christian
    Poege, Matthias
    Lissner, Andreas
    Mertens, Florian O. R. L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (24) : 14799 - 14804
  • [24] Recent Advances of Photocatalytic Hydrogenation of CO2 to Methanol
    Shinde, Gajanan Y.
    Mote, Abhishek S.
    Gawande, Manoj B.
    CATALYSTS, 2022, 12 (01)
  • [25] PdIn intermetallic nanoparticles for the Hydrogenation of CO2 to Methanol
    Garcia-Trenco, Andres
    Regoutz, Anna
    White, Edward R.
    Payne, David J.
    Shaffer, Milo S. P.
    Williams, Charlotte K.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 220 : 9 - 18
  • [26] Hydrogenation of CO2 to methanol over CuCeTiOx catalysts
    Chang, Kuan
    Wang, Tiefeng
    Chen, Jingguang G.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 206 : 704 - 711
  • [27] Ni-In Synergy in CO2 Hydrogenation to Methanol
    Zhu, Jiadong
    Cannizzaro, Francesco
    Liu, Liang
    Zhang, Hao
    Kosinov, Nikolay
    Filot, Ivo A. W.
    Rabeah, Jabor
    Brueckner, Angelika
    Hensen, Emiel J. M.
    ACS CATALYSIS, 2021, 11 (18): : 11371 - 11384
  • [28] Heterogeneously Catalyzed Hydrogenation of Supercritical CO2 to Methanol
    Kommoss, Bjoern
    Klemenz, Sebastian
    Schmitt, Fabian
    Hocke, Elisabeth
    Vogel, Kevin
    Drochner, Alfons
    Albert, Barbara
    Etzold, Bastian
    Vogel, Herbert G.
    CHEMICAL ENGINEERING & TECHNOLOGY, 2017, 40 (10) : 1907 - 1915
  • [29] Cascade Catalysis for the Homogeneous Hydrogenation of CO2 to Methanol
    Huff, Chelsea A.
    Sanford, Melanie S.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (45) : 18122 - 18125
  • [30] PdZn catalysts for the direct hydrogenation of CO2 to methanol
    Bahruji, Hasliza
    Bowker, Michael
    Hutchings, Graham
    Jones, Wilm
    Morgan, David
    Armstrong, Robert
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254