Lung Morphology Assessment with Balanced Steady-State Free Precession MR Imaging Compared with CT1

被引:42
|
作者
Rajaram, Smitha [1 ,2 ]
Swift, Andrew J. [1 ,4 ]
Capener, David [1 ]
Telfer, Adam [1 ]
Davies, Christine [2 ]
Hill, Catherine [2 ]
Condliffe, Robin [3 ,4 ]
Elliot, Charles [3 ,4 ]
Hurdman, Judith [3 ]
Kiely, David G. [3 ,4 ]
Wild, Jim M. [1 ,4 ]
机构
[1] Univ Sheffield, Acad Unit Radiol, Royal Hallamshire Hosp, Sheffield S10 2JF, S Yorkshire, England
[2] Sheffield Teaching Hosp Trust, Dept Radiol, Sheffield, S Yorkshire, England
[3] Sheffield Teaching Hosp NHS Fdn Trust, Sheffield Pulm Vasc Dis Unit, Royal Hallamshire Hosp, Sheffield, S Yorkshire, England
[4] Natl Inst Hlth Res, Sheffield Cardiovasc Biomed Res Unit, Sheffield, S Yorkshire, England
基金
英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
IDIOPATHIC PULMONARY-FIBROSIS; GRADIENT-ECHO TECHNIQUE; MAGNETIC-RESONANCE; COMPUTED-TOMOGRAPHY; INITIAL-EXPERIENCE; PRACTICAL APPROACH; CYSTIC-FIBROSIS; CHEST; NODULES; PARENCHYMA;
D O I
10.1148/radiol.12110990
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To evaluate the utility of 1.5-T noncontrast magnetic resonance (MR) imaging of the lung parenchyma and to compare it with computed tomography (CT) in the assessment of interstitial lung disease and other morphologic lung abnormalities. Materials and Methods: Institutional review board approval was obtained for retrospective image analysis. A total of 236 patients who underwent MR imaging and CT as part of their assessment for suspected pulmonary hypertension were included in this study. Lung MR imaging was performed with a 1.5-T system as a stack of axial two-dimensional balanced steady-state free precession (bSSFP) acquisitions. Two radiologists independently evaluated CT and MR images for various morphologic abnormalities, such as pulmonary fibrosis, pleural and mediastinal disease, solid lesions, bronchial disease, and emphysema. kappa statistics were used to measure interobserver agreement. Results: Sensitivity and specificity of MR imaging in the identification of pulmonary fibrosis (n = 46) were 89% (95% confidence interval: 77%, 96%) and 91% (95% confidence interval: 76%, 98%), respectively, when compared with CT. In comparison to CT, MR imaging depicted 75% of ground-glass opacities. Nine of the 12 noncalcified nodules were identified on MR images. Lung nodules (75%, kappa = 0.71) and effusions (100%, kappa = 0.89) were also well visualized on MR images. MR imaging was however less effective in depicting emphysema (16%, kappa = 0.60) and minor fibrosis (67%, kappa = 0.79). Conclusion: This study shows bSSFP MR imaging is inferior to CT in imaging parenchymal lung disease; however, this study does demonstrate for the first time a potential role for the bSSFP sequence as an alternative radiation-free noncontrast imaging modality for use in patients with pulmonary fibrosis. (C) RSNA, 2012
引用
收藏
页码:569 / 577
页数:9
相关论文
共 50 条
  • [21] Dynamic MR Imaging of the Temporomandibular Joint Using a Balanced Steady-State Free Precession Sequence at 3T
    Yen, P.
    Katzberg, R. W.
    Buonocore, M. H.
    Sonico, J.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2013, 34 (03) : E24 - E26
  • [22] Quantitative diffusion imaging with steady-state free precession
    Deoni, SCL
    Peters, TM
    Rutt, BK
    MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (02) : 428 - 433
  • [23] Flow effects in balanced steady state free precession imaging
    Markl, M
    Alley, MT
    Elkins, CJ
    Pelc, NJ
    MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) : 892 - 903
  • [24] Starter sequence for steady-state free precession imaging
    Foxall, DL
    MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (04) : 919 - 929
  • [25] Pseudo Steady-State Free Precession for MR-Fingerprinting
    Asslaender, Jakob
    Glaser, Steffen J.
    Hennig, Juergen
    MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (03) : 1151 - 1161
  • [26] Vastly Undersampled Isotropic Projection Steady-State Free Precession Imaging of the Knee: Diagnostic Performance Compared with Conventional MR
    Kijowski, Richard
    Blankenbaker, Donna G.
    Klaers, Jessica L.
    Shinki, Kazuhiko
    De Smet, Arthur A.
    Block, Walter F.
    RADIOLOGY, 2009, 251 (01) : 185 - 194
  • [27] Phase preparation in steady-state free precession MR elastography
    Rump, Jens
    Warmuth, Carsten
    Braun, Jurgen
    Sack, Ingolf
    MAGNETIC RESONANCE IMAGING, 2008, 26 (02) : 228 - 235
  • [28] Quantitative assessment of left ventricular function: Steady-state free precession MR imaging with or without sensitivity encoding
    Kacere, RD
    Pereyra, M
    Nemeth, MA
    Muthupillai, R
    Flamm, SD
    RADIOLOGY, 2005, 235 (03) : 1031 - 1035
  • [29] Improved dark blood imaging of the heart using radial balanced steady-state free precession
    Robert R. Edelman
    Marcos Botelho
    Amit Pursnani
    Shivraman Giri
    Ioannis Koktzoglou
    Journal of Cardiovascular Magnetic Resonance, 18
  • [30] Positive susceptibility-based contrast imaging with dephased balanced steady-state free precession
    Faust, Jonas Frederik
    Speier, Peter
    Krafft, Axel Joachim
    Patil, Sunil
    Seethamraju, Ravi Teja
    Ladd, Mark E.
    Maier, Florian
    MAGNETIC RESONANCE IN MEDICINE, 2025,