ECG-ATK-GAN: Robustness Against Adversarial Attacks on ECGs Using Conditional Generative Adversarial Networks

被引:1
|
作者
Hossain, Khondker Fariha [1 ]
Kamran, Sharif Amit [1 ]
Tavakkoli, Alireza [1 ]
Ma, Xingjun [2 ]
机构
[1] Univ Nevada, Dept Comp Sci & Engn, Reno, NV 89557 USA
[2] Fudan Univ, Sch Comp Sci, Shanghai, Peoples R China
关键词
ECG; Adversarial attack; Generative Adversarial Network; Electrocardiogram; Deep learning;
D O I
10.1007/978-3-031-17721-7_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automating arrhythmia detection from ECG requires a robust and trusted system that retains high accuracy under electrical disturbances. Many machine learning approaches have reached human-level performance in classifying arrhythmia from ECGs. However, these architectures are vulnerable to adversarial attacks, which can misclassify ECG signals by decreasing the model's accuracy. Adversarial attacks are small crafted perturbations injected in the original data which manifest the out-of-distribution shifts in signal to misclassify the correct class. Thus, security concerns arise for false hospitalization and insurance fraud abusing these perturbations. To mitigate this problem, we introduce the first novel Conditional Generative Adversarial Network (GAN), robust against adversarial attacked ECG signals and retaining high accuracy. Our architecture integrates a new class-weighted objective function for adversarial perturbation identification and new blocks for discerning and combining out-of-distribution shifts in signals in the learning process for accurately classifying various arrhythmia types. Furthermore, we benchmark our architecture on six different white and black-box attacks and compare them with other recently proposed arrhythmia classification models on two publicly available ECG arrhythmia datasets. The experiment confirms that our model is more robust against such adversarial attacks for classifying arrhythmia with high accuracy.
引用
收藏
页码:68 / 78
页数:11
相关论文
共 50 条
  • [41] Using Generative Adversarial Networks for Conditional Creation of Anime Posters
    Sankalpa, Donthi
    Ramesh, Jayroop
    Zualkernan, Imran
    Proceedings of the 2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology, IAICT 2022, 2022, : 197 - 203
  • [42] Spatial interpolation using conditional generative adversarial neural networks
    Zhu, Di
    Cheng, Ximeng
    Zhang, Fan
    Yao, Xin
    Gao, Yong
    Liu, Yu
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2020, 34 (04) : 735 - 758
  • [43] Airfoil Inverse Design using Conditional Generative Adversarial Networks
    Tan, Xavier
    Manna, Dai
    Chattoraj, Joyjit
    Liu Yong
    Xu Xinxing
    Ha, Dao My
    Yang Feng
    2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 143 - 148
  • [44] Enhanced dataset synthesis using conditional generative adversarial networks
    Ahmet Mert
    Biomedical Engineering Letters, 2023, 13 : 41 - 48
  • [45] Encoding Generative Adversarial Networks for Defense Against Image Classification Attacks
    Perez-Bravo, Jose M.
    Rodriguez-Rodriguez, Jose A.
    Garcia-Gonzalez, Jorge
    Molina-Cabello, Miguel A.
    Thurnhofer-Hemsi, Karl
    Lopez-Rubio, Ezequiel
    BIO-INSPIRED SYSTEMS AND APPLICATIONS: FROM ROBOTICS TO AMBIENT INTELLIGENCE, PT II, 2022, 13259 : 163 - 172
  • [46] Improving Robustness Against Adversarial Attacks with Deeply Quantized Neural Networks
    Ayaz, Ferheen
    Zakariyya, Idris
    Cano, Jose
    Keoh, Sye Loong
    Singer, Jeremy
    Pau, Danilo
    Kharbouche-Harrari, Mounia
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [47] Improving Robustness Against Adversarial Attacks with Deeply Quantized Neural Networks
    Ayaz, Ferheen
    Zakariyya, Idris
    Cano, José
    Keoh, Sye Loong
    Singer, Jeremy
    Pau, Danilo
    Kharbouche-Harrari, Mounia
    arXiv, 2023,
  • [48] On the robustness of skeleton detection against adversarial attacks
    Bai, Xiuxiu
    Yang, Ming
    Liu, Zhe
    NEURAL NETWORKS, 2020, 132 : 416 - 427
  • [49] MRobust: A Method for Robustness against Adversarial Attacks on Deep Neural Networks
    Liu, Yi-Ling
    Lomuscio, Alessio
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [50] ROBUSTNESS OF SAAK TRANSFORM AGAINST ADVERSARIAL ATTACKS
    Ramanathan, Thiyagarajan
    Manimaran, Abinaya
    You, Suya
    Kuo, C-C Jay
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2531 - 2535