Composite geometric phase for multipartite entangled states

被引:16
|
作者
Williamson, M. S. [1 ]
Vedral, V. [1 ]
机构
[1] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevA.76.032115
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
When an entangled state evolves under local unitaries, the entanglement in the state remains fixed. Here we show that the dynamical phase acquired by an entangled state in such a scenario can always be understood as the sum of the dynamical phases of its subsystems. In contrast, the equivalent statement for the geometric phase is not generally true unless the state is separable. For an entangled state an additional term is present, the mutual geometric phase, that measures the change the additional correlations present in the entangled state make to the geometry of the state space. For N qubit states we find that this change can be explained solely by classical correlations for states with a Schmidt decomposition and solely by quantum correlations for W states.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] ENT: A MULTIPARTITE ENTANGLEMENT MEASURE, AND PARAMETERIZATION OF ENTANGLED STATES
    Hedemann, Samuel R.
    QUANTUM INFORMATION & COMPUTATION, 2018, 18 (5-6) : 389 - 442
  • [42] Local Hamiltonians for maximally multipartite-entangled states
    Facchi, P.
    Florio, G.
    Pascazio, S.
    Pepe, F.
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [43] Connecting two multipartite entangled states by entanglement swapping
    Su, Xiaolong
    Tian, Caixing
    Deng, Xiaowei
    Li, Qiang
    Xie, Changde
    Peng, Kunchi
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [44] A flying Schrodinger's cat in multipartite entangled states
    Wang, Zhiling
    Bao, Zenghui
    Wu, Yukai
    Li, Yan
    Cai, Weizhou
    Wang, Weiting
    Ma, Yuwei
    Cai, Tianqi
    Han, Xiyue
    Wang, Jiahui
    Song, Yipu
    Sun, Luyan
    Zhang, Hongyi
    Duan, Luming
    SCIENCE ADVANCES, 2022, 8 (10)
  • [45] Separated atomic ensembles: Multimode squeezed states and multipartite entangled states
    Xu, Qing
    Hu, Xiangming
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [46] Multipartite mixed maximally entangled states: mixed states with entanglement 1
    Hedemann, Samuel R.
    QUANTUM INFORMATION PROCESSING, 2022, 21 (04)
  • [47] Multipartite mixed maximally entangled states: mixed states with entanglement 1
    Samuel R. Hedemann
    Quantum Information Processing, 21
  • [48] GEOMETRIC PHASE INDUCED CHANGES IN THE CORRELATION-PROPERTIES OF THE ENTANGLED STATES
    AGARWAL, GS
    OPTICS COMMUNICATIONS, 1992, 87 (5-6) : 193 - 195
  • [49] On the Geometric Probability of Entangled Mixed States
    Khvedelidze A.
    Rogojin I.
    Journal of Mathematical Sciences, 2015, 209 (6) : 988 - 1004
  • [50] Preparation of multipartite entangled states used for quantum information networks
    Su XiaoLong
    Jia XiaoJun
    Xie ChangDe
    Peng KunChi
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (07) : 1210 - 1217