ANALYSIS OF THE GAUSS-BINGHAM DISTRIBUTION FOR ATTITUDE UNCERTAINTY PROPAGATION

被引:0
|
作者
Darling, Jacob E. [1 ]
DeMars, Kyle J. [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, 1201 N State St, Rolla, MO 65409 USA
来源
ASTRODYNAMICS 2015 | 2016年 / 156卷
关键词
SPACECRAFT;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Attitude uncertainty quantification typically requires a small angle assumption, and thus an inherent small uncertainty assumption, to be made. This small angle assumption can be eliminated by employing the Bingham distribution to represent the attitude uncertainty in the attitude quaternion directly. Moreover, an extension to the Bingham distribution, termed the Gauss-Bingham distribution, can be used to represent correlated attitude quaternion and angular velocity uncertainty to enable attitude uncertainty propagation. In order to evaluate the potential accuracy gain using the Gauss-Bingham distribution for attitude uncertainty quantification, the Gauss-Bingham distribution method for attitude uncertainty propagation is compared to the propagation step of the multiplicative extended Kalman filter, which requires a small angle assumption to be made. The attitude uncertainty quantified by each method is discretely sampled and mapped to a common attitude parameterization in order to make accurate comparisons between each method.
引用
收藏
页码:1407 / 1426
页数:20
相关论文
共 50 条
  • [31] Uncertainty Propagation for Compositional Flow Using a Probability Distribution Method
    Olga Fuks
    Fayadhoi Ibrahima
    Pavel Tomin
    Hamdi A. Tchelepi
    Transport in Porous Media, 2020, 132 : 113 - 133
  • [32] Uncertainty Propagation for Compositional Flow Using a Probability Distribution Method
    Fuks, Olga
    Ibrahima, Fayadhoi
    Tomin, Pavel
    A. Tchelepi, Hamdi
    TRANSPORT IN POROUS MEDIA, 2020, 132 (01) : 113 - 133
  • [33] Risk classification and uncertainty propagation for virtual water distribution systems
    Torres, Jacob M.
    Brumbelow, Kelly
    Guikema, Seth D.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2009, 94 (08) : 1259 - 1273
  • [34] Uncertainty propagation in vegetation distribution models based on ensemble classifiers
    Peters, Jan
    Verhoest, Niko E. C.
    Samson, Roeland
    Van Meirvenne, Marc
    Cockx, Liesbet
    De Baets, Bernard
    ECOLOGICAL MODELLING, 2009, 220 (06) : 791 - 804
  • [35] Uncertainty Propagation Analysis of T/R Modules
    Wang, Z. H.
    Jiang, C.
    Ruan, X. X.
    Zhang, Y. Q.
    Huang, Z. L.
    Wang, C. S.
    Fang, T.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2019, 16 (07)
  • [36] Aerodynamic uncertainty propagation in bridge flutter analysis
    Mannini, C.
    Bartoli, G.
    STRUCTURAL SAFETY, 2015, 52 : 29 - 39
  • [37] Uncertainty Analysis and Propagation for an Auxiliary Power Module
    Kukkala, Vipin Kumar
    Bradley, Thomas H.
    Pasricha, Sudeep
    2017 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2017, : 164 - 168
  • [38] COMPARATIVE ANALYSIS OF METHODOLOGIES FOR UNCERTAINTY PROPAGATION AND QUANTIFICATION
    Cuneo, Alessandra
    Traverso, Alberto
    Shahpar, Shahrokh
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 2C, 2017,
  • [39] Uncertainty Propagation in Monte Carlo Depletion Analysis
    Park, Ho Jin
    Shim, Hyung Jin
    Kim, Chang Hyo
    NUCLEAR SCIENCE AND ENGINEERING, 2011, 167 (03) : 196 - 208
  • [40] A framework for the propagation of uncertainty in Transfer Path Analysis
    Meggitt, J. W. R.
    Moorhouse, A. T.
    Wienen, K.
    Sturm, M.
    JOURNAL OF SOUND AND VIBRATION, 2020, 483