Anomaly detection for hydropower turbine unit based on variational modal decomposition and deep autoencoder

被引:20
|
作者
Wang, Hongteng [1 ]
Liu, Xuewei [2 ]
Ma, Liyong [2 ]
Zhang, Yong [3 ]
机构
[1] Huadian Elect Power Res Inst Co LTD, Hangzhou 310030, Peoples R China
[2] Harbin Inst Technol, Sch Informat Sci & Engn, Weihai 264209, Peoples R China
[3] Harbin Inst Technol, Sch Ocean Engn, Weihai 264209, Peoples R China
关键词
Hydropower turbine; Anomaly detection; Autoencoder; Variational mode decomposition; ROTATING MACHINERY;
D O I
10.1016/j.egyr.2021.09.179
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Anomaly detection for hydropower turbine unit is a requirement for the safety of hydropower system. An unsupervised anomaly detection method employing variational modal decomposition (VMD) and deep autoencoder is proposed. VMD is employed to the data collected by multiple sensors to obtain the sub signal of each data. These sub signals in each time-period constitute two-dimensional data. The autoencoder based on convolutional neural network is used to complete unsupervised learning, and the reconstruction residual of autoencoder is used for anomaly detection. The experimental results show that the deep autoencoder can increase the interval between abnormal and normal data distribution, and VMD can effectively reduce the number of samples in the overlapping area. Compared with traditional autoencoder method, the proposed method improves the recall, precision and F1 scores by 0.140, 0.205 and 0.175, respectively. The proposed method achieves better anomaly detection performance than other methods. (C) 2021 The Author(s). Published by Elsevier Ltd.
引用
收藏
页码:938 / 946
页数:9
相关论文
共 50 条
  • [1] Anomaly detection for hydropower turbine based on variational modal decomposition and hierarchical temporal memory
    Ma, Tianyuan
    Zhu, Ziyuan
    Wang, Lianfang
    Wang, Hongteng
    Ma, Liyong
    ENERGY REPORTS, 2022, 8 : 1546 - 1551
  • [2] Degradation Evaluation of Hydropower Equipment Based on Variational Modal Decomposition
    Wang, Hongteng
    Yu, Keming
    Huang, Kexin
    Ma, Liyong
    Journal of Computers (Taiwan), 2024, 35 (04) : 31 - 38
  • [3] Electricity Behavior Modeling and Anomaly Detection Services Based on a Deep Variational Autoencoder Network
    Lin, Rongheng
    Chen, Shuo
    He, Zheyu
    Wu, Budan
    Zou, Hua
    Zhao, Xin
    Li, Qiushuang
    ENERGIES, 2024, 17 (16)
  • [4] Wind turbine anomaly detection based on SCADA: A deep autoencoder enhanced by fault instances
    Liu, Jiarui
    Yang, Guotian
    Li, Xinli
    Wang, Qianming
    He, Yuchen
    Yang, Xiyun
    ISA TRANSACTIONS, 2023, 139 : 586 - 605
  • [5] Anomaly Detection Method for MVB Network Based on Variational Autoencoder
    Yang Y.
    Wang L.
    Chen H.
    Wang C.
    Tiedao Xuebao/Journal of the China Railway Society, 2022, 44 (01): : 71 - 78
  • [6] VESC: a new variational autoencoder based model for anomaly detection
    Zhang, Chunkai
    Wang, Xinyu
    Zhang, Jiahua
    Li, Shaocong
    Zhang, Hanyu
    Liu, Chuanyi
    Han, Peiyi
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (03) : 683 - 696
  • [7] Hyperspectral Anomaly Detection Based on Graph Regularized Variational Autoencoder
    Wei, Jie
    Zhang, Jingfa
    Xu, Yang
    Xu, Lidan
    Wu, Zebin
    Wei, Zhihui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] VESC: a new variational autoencoder based model for anomaly detection
    Chunkai Zhang
    Xinyu Wang
    Jiahua Zhang
    Shaocong Li
    Hanyu Zhang
    Chuanyi Liu
    Peiyi Han
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 683 - 696
  • [9] Hierarchical Conditional Variational Autoencoder Based Acoustic Anomaly Detection
    Purohit, Harsh
    Endo, Takashi
    Yamamoto, Masaaki
    Kawaguchi, Yohei
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 274 - 278
  • [10] Anomaly detection with a variational autoencoder for Arabic mispronunciation detection
    Lounis M.
    Dendani B.
    Bahi H.
    International Journal of Speech Technology, 2024, 27 (02) : 413 - 424