VESC: a new variational autoencoder based model for anomaly detection

被引:0
|
作者
Chunkai Zhang
Xinyu Wang
Jiahua Zhang
Shaocong Li
Hanyu Zhang
Chuanyi Liu
Peiyi Han
机构
[1] Harbin Institute of Technology Shenzhen,
[2] New York Stock Exchange LLC,undefined
关键词
Anomaly detection; Generative model; Spatial constrained network; Recursive reconstruction strategy;
D O I
暂无
中图分类号
学科分类号
摘要
Anomaly detection is a hot and practical problem. Most of the existing research is based on the model of the generative model, which judges abnormalities by comparing the data errors between original samples and reconstruction samples. Among them, Variational AutoEncoder (VAE) is widely used, but it has the problem of over-generalization. In this paper, we design an unsupervised deep learning anomaly detection method named VESC and propose the recursive reconstruction strategy. VESC adopts the idea of data compression and three structures on the basis of the original VAE, namely spatial constrained network, reformer structure, and re-encoder. The recursive reconstruction strategy can improve the accuracy of the model by increasing the number and typicality of training samples, and it can apply to most unsupervised learning methods. Experimental results of several benchmarks show that our model outperforms state-of-the-art anomaly detection methods. And our proposed strategy can improve the detection results of the original model.
引用
收藏
页码:683 / 696
页数:13
相关论文
共 50 条
  • [1] VESC: a new variational autoencoder based model for anomaly detection
    Zhang, Chunkai
    Wang, Xinyu
    Zhang, Jiahua
    Li, Shaocong
    Zhang, Hanyu
    Liu, Chuanyi
    Han, Peiyi
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (03) : 683 - 696
  • [2] Anomaly Detection Method for MVB Network Based on Variational Autoencoder
    Yang Y.
    Wang L.
    Chen H.
    Wang C.
    Tiedao Xuebao/Journal of the China Railway Society, 2022, 44 (01): : 71 - 78
  • [3] Hyperspectral Anomaly Detection Based on Graph Regularized Variational Autoencoder
    Wei, Jie
    Zhang, Jingfa
    Xu, Yang
    Xu, Lidan
    Wu, Zebin
    Wei, Zhihui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] A Novel Model for Ship Trajectory Anomaly Detection Based on Gaussian Mixture Variational Autoencoder
    Xie, Lei
    Guo, Tao
    Chang, Jiliang
    Wan, Chengpeng
    Hu, Xinyuan
    Yang, Yang
    Ou, Changkui
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (11) : 13826 - 13835
  • [5] Hierarchical Conditional Variational Autoencoder Based Acoustic Anomaly Detection
    Purohit, Harsh
    Endo, Takashi
    Yamamoto, Masaaki
    Kawaguchi, Yohei
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 274 - 278
  • [6] Anomaly detection with a variational autoencoder for Arabic mispronunciation detection
    Lounis M.
    Dendani B.
    Bahi H.
    International Journal of Speech Technology, 2024, 27 (02) : 413 - 424
  • [7] CONTINUAL LEARNING FOR ANOMALY DETECTION WITH VARIATIONAL AUTOENCODER
    Wiewel, Felix
    Yang, Bin
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3837 - 3841
  • [8] Robust and Unsupervised KPI Anomaly Detection Based on Conditional Variational Autoencoder
    Li, Zeyan
    Chen, Wenxiao
    Pei, Dan
    2018 IEEE 37TH INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC), 2018,
  • [9] Semisupervised anomaly detection of multivariate time series based on a variational autoencoder
    Ningjiang Chen
    Huan Tu
    Xiaoyan Duan
    Liangqing Hu
    Chengxiang Guo
    Applied Intelligence, 2023, 53 : 6074 - 6098
  • [10] Variational AutoEncoder-Based Anomaly Detection Scheme for Load Forecasting
    Park, Sungwoo
    Jung, Seungmin
    Hwang, Eenjun
    Rho, Seungmin
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND APPLIED COGNITIVE COMPUTING, 2021, : 833 - 839