Infrared small target detection with kernel Fukunaga-Koontz transform

被引:13
|
作者
Liu, Rui-ming
Liu, Er-qi
Yang, Jie
Zhang, Tian-hao
Wang, Fang-lin
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Reognit, Shanghai 200240, Peoples R China
[2] China Aerosp Sci & Ind Corp, Inst Acad 2, Beijing 100854, Peoples R China
关键词
fukunaga-Koontz transform; kernel-based method; principal component analysis; kernel principal component analysis; small target detection;
D O I
10.1088/0957-0233/18/9/038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Fukunaga-Koontz transform ( FKT) has been proposed for many years. It can be used to solve two- pattern classification problems successfully. However, there are few researchers who have definitely extended FKT to kernel FKT ( KFKT). In this paper, we first complete this task. Then a method based on KFKT is developed to detect infrared small targets. KFKT is a supervised learning algorithm. How to construct training sets is very important. For automatically detecting targets, the synthetic target images and real background images are used to train KFKT. Because KFKT can represent the higher order statistical properties of images, we expect better detection performance of KFKT than that of FKT. The well- devised experiments verify that KFKT outperforms FKT in detecting infrared small targets.
引用
收藏
页码:3025 / 3035
页数:11
相关论文
共 50 条
  • [21] Multilinear clustering via tensor Fukunaga-Koontz transform with Fisher eigenspectrum regularization
    Gatto, Bernardo B.
    Santos, Eulanda M. dos
    Molinetti, Marco A. F.
    Fukui, Kazuhiro
    APPLIED SOFT COMPUTING, 2021, 113
  • [22] Affine feature extraction: A generalization of the Fukunaga-Koontz transformation
    Cao, Wenbo
    Haralick, Robert
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2009, 22 (01) : 40 - 47
  • [23] Optimal reduced-rank quadratic classifiers using the Fukunaga-Koontz transform, with applications to automated target recognition
    Huo, XM
    Elad, M
    Flesia, AG
    Muise, B
    Stanfill, R
    Friedman, J
    Popescu, B
    Chen, JH
    Mahalanobis, A
    Donoho, DL
    AUTOMATIC TARGET RECOGNITION XIII, 2003, 5094 : 59 - 72
  • [24] Fukunaga-Koontz Convolutional Network with Applications on Character Classification
    Gatto, Bernardo B.
    dos Santos, Eulanda M.
    Fukui, Kazuhiro
    Junior, Waldir S. S.
    dos Santos, Kenny, V
    NEURAL PROCESSING LETTERS, 2020, 52 (01) : 443 - 465
  • [25] Affine feature extraction: A generalization of the Fukunaga-Koontz transformation
    Cao, Wenbo
    Haralick, Robert
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, PROCEEDINGS, 2007, 4571 : 160 - +
  • [26] Exploiting Fisher and Fukunaga-Koontz Transforms in Chernoff Dimensionality Reduction
    Peng, Jing
    Seetharaman, Guna
    Fan, Wei
    Varde, Aparna
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2013, 7 (02)
  • [27] 核Fukunaga-Koontz变换检测红外小目标
    刘瑞明
    刘尔琦
    杨杰
    张田昊
    王芳琳
    红外与毫米波学报, 2008, (01) : 47 - 50
  • [28] 基于Fukunaga-Koontz变换的高光谱图像异常检测
    蒲晓丰
    雷武虎
    张林虎
    蒋奇材
    红外技术, 2010, 32 (04) : 195 - 197
  • [29] A Funnel Fukunaga-Koontz Transform for Robust Indoor-Outdoor Detection Using Channel-State Information in 5G IoT Context
    Montella, Sebastien
    Berruet, Brieuc
    Baala, Oumaya
    Guillet, Valery
    Caminada, Alexandre
    Lassabe, Frederic
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (15): : 14018 - 14029
  • [30] Fukunaga-Koontz feature transformation for statistical structural damage detection and hierarchical neuro-fuzzy damage localisation
    Hoell, Simon
    Omenzetter, Piotr
    JOURNAL OF SOUND AND VIBRATION, 2017, 400 : 329 - 353