Convergence of a substructuring method with Lagrange multipliers

被引:117
|
作者
Mandel, J
Tezaur, R
机构
[1] Center for Computational Mathematics, University of Colorado at Denver, Denver
关键词
D O I
10.1007/s002110050201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the convergence of a substructuring iterative method with Lagrange multipliers, proposed recently by Farhat and Roux. The method decomposes finite element discretization of an elliptic boundary value problem into Neumann problems on the subdomains plus a coarse problem for the subdomain nullspace components. For linear conforming elements and preconditioning by the Dirichlet problems on the subdomains, we prove the asymptotic bound on the condition number C(1+log(H/h))(gamma), gamma = 2 or 3, where h is the characteristic element size and H subdomain size.
引用
下载
收藏
页码:473 / 487
页数:15
相关论文
共 50 条
  • [21] GEOMETRIC INTUITIVE TREATMENT OF THE LAGRANGE MULTIPLIERS METHOD
    Almeida Rodriguez, Angel Jose
    Lopez Brito, Maria Belen
    3RD INTERNATIONAL CONFERENCE OF EDUCATION, RESEARCH AND INNOVATION (ICERI2010), 2010,
  • [22] The Mortar finite element method with Lagrange multipliers
    Ben Belgacem, F
    NUMERISCHE MATHEMATIK, 1999, 84 (02) : 173 - 197
  • [23] An alternate method of evaluating Lagrange multipliers of MEP
    Uddin, Zaheer
    Khan, Muhammad Bilal
    Zaheer, Muhammad Hani
    Ahmad, Waqar
    Qureshi, Muhammad Ali
    SN APPLIED SCIENCES, 2019, 1 (03):
  • [24] On the convergence of a dual-primal substructuring method
    Mandel, J
    Tezaur, R
    NUMERISCHE MATHEMATIK, 2001, 88 (03) : 543 - 558
  • [25] The Method of Lagrange Multipliers for the Class of Subsmooth Mappings
    Orlov, I. V.
    MATHEMATICAL NOTES, 2018, 103 (1-2) : 323 - 327
  • [26] On substructuring technique: Application of Lagrange multiplier method on cyclic structures
    Irwanto, B
    Hardtke, HJ
    Pawandenat, D
    Schmidt, R
    JOURNAL OF SOUND AND VIBRATION, 2001, 247 (05) : 939 - 945
  • [27] The Method of Lagrange Multipliers for the Class of Subsmooth Mappings
    I. V. Orlov
    Mathematical Notes, 2018, 103 : 323 - 327
  • [28] The Mortar finite element method with Lagrange multipliers
    Faker Ben Belgacem
    Numerische Mathematik, 1999, 84 : 173 - 197
  • [29] LAGRANGE MULTIPLIERS
    BLANCHET.E
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 273 (20): : 916 - &