Serpentine polymorphism: a quantitative insight from first-principles calculations

被引:30
|
作者
Demichelis, Raffaella [1 ,2 ]
De La Pierre, Marco [1 ,2 ]
Mookherjee, Mainak [3 ]
Zicovich-Wilson, Claudio M. [4 ]
Orlando, Roberto [5 ]
机构
[1] Curtin Univ, Nanochem Res Inst, Curtin Inst Computat, U1987, Perth, WA 6845, Australia
[2] Curtin Univ, Dept Chem, U1987, Perth, WA 6845, Australia
[3] Florida State Univ, Earth Ocean & Atmospher Sci, Tallahassee, FL 32036 USA
[4] Univ Autonoma Estado Morelos, Ctr Invest Ciencias IICBA, Ave Univ 1001, Cuernavaca 62209, Morelos, Mexico
[5] Univ Turin, Dipartimento Chim, Via Giuria 7, I-10125 Turin, Italy
来源
CRYSTENGCOMM | 2016年 / 18卷 / 23期
基金
美国国家科学基金会;
关键词
ELASTIC PROPERTIES; CRYSTAL-STRUCTURE; CHRYSOTILE; ANTIGORITE; LIZARDITE-1T; SYMMETRY; MINERALS; SPECTRUM; BEHAVIOR; ENERGY;
D O I
10.1039/c6ce00190d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-walled chrysotile nanotubes [Mg3Si2O5(OH)(4)] of increasing size (up to 5004 atoms per unit cell, corresponding to a radius of 205 angstrom) have been modelled at the Density Functional level of theory. For the first time, it is demonstrated that the (n, -n) and (n, n) series present a minimum energy structure at a specific radius (88.7 and 89.6 angstrom, respectively, referring to the neutral surface), corresponding to a rolling vector of (60, -60) and (105, 105), respectively. The minima are nearly overlapped and are lower in energy than the corresponding slab of lizardite (the flat-layered polymorph of chrysotile) by about 3.5 kJ mol(-1) per formula unit. In both cases, the energy profile presents a shallow minimum, where radii in the range of 63 to 139 angstrom differ in energy by less than 0.5 kJ mol(-1) per formula unit. The energy of larger nanotubes has a trend that slowly converges to the limit of the flat lizardite slab. Structural quantities such as bond distances and angles of nanotubes with increasing size asymptotically converge to the flat slab limit, with no discontinuities in the surrounding of the minimum energy structures. However, analysis of the elongation of a rectangular pseudo-unit cell along the nanotube circumference indicates that the main factor that leads lizardite to curl in tubes is the elastic strain caused by the mismatch between the lattice parameters of the two adjacent tetrahedral and octahedral sheets. It is also shown in this study that the curvature of the layers in one of the lately proposed models of antigorite, the "wavy-layered" polymorph of chrysotile, falls within the range of radii of minimum energy for the nanotubes. These findings provide quantitative insights into the peculiar polymorphism of these three phyllosilicates. They show also that chrysotile belongs to those families of inorganic nanotubes that present a minimum in their strain energy profile at a specific range of radii, which is lower in energy with respect to their flat equivalent.
引用
收藏
页码:4412 / 4419
页数:8
相关论文
共 50 条
  • [31] Topological insulators from the perspective of first-principles calculations
    Zhang, Haijun
    Zhang, Shou-Cheng
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2013, 7 (1-2): : 72 - 81
  • [32] Topological semimetals from the perspective of first-principles calculations
    Li, Jiaheng
    Zhang, Zetao
    Wang, Chong
    Huang, Huaqing
    Gu, Bing-Lin
    Duan, Wenhui
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (19)
  • [33] Phase stability of ZnO from first-principles calculations
    Wrobel, Jan
    Piechota, Jacek
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (06)
  • [34] Understanding ceria nanoparticles from first-principles calculations
    Loschen, Christoph
    Bromley, Stefan T.
    Neyman, Konstantin M.
    Illas, Francesc
    JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (28): : 10142 - 10145
  • [35] Characterization of platinum nitride from first-principles calculations
    Yildiz, A.
    Akinci, Ue
    Gulseren, O.
    Sokmen, I.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (48)
  • [36] The properties of BiSb nanoribbons from first-principles calculations
    Lv, H. Y.
    Liu, H. J.
    Tan, X. J.
    Pan, L.
    Wen, Y. W.
    Shi, J.
    Tang, X. F.
    NANOSCALE, 2012, 4 (02) : 511 - 517
  • [37] Heat transport in silicon from first-principles calculations
    Esfarjani, Keivan
    Chen, Gang
    Stokes, Harold T.
    PHYSICAL REVIEW B, 2011, 84 (08)
  • [38] Prediction on technetium triboride from first-principles calculations
    Miao, Xiaojia
    Xing, Wandong
    Meng, Fanyan
    Yu, Rong
    SOLID STATE COMMUNICATIONS, 2017, 252 : 40 - 45
  • [39] The impact of complex defect pairs on SnO2 surface: Insight from first-principles calculations
    Zhang, Qiuli
    Zhuang, Yu
    Wang, Shurong
    Song, Qiaogang
    Dou, Youbo
    Zhang, Hongwen
    Lu, Wenjing
    Yang, Shiyan
    Zhang, Xihua
    Wu, Yuan
    Jiang, Xianfeng
    AIP ADVANCES, 2025, 15 (03)
  • [40] Interfacial interactions and enhanced optoelectronic properties of GaN/perovskite heterostructures: insight from first-principles calculations
    Guo, Yao
    Xue, Yuanbin
    Xu, Lianqiang
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (19) : 11352 - 11363