Smoothed quantile regression for panel data

被引:62
|
作者
Galvao, Antonio F. [1 ]
Kato, Kengo [2 ]
机构
[1] Univ Iowa, Dept Econ, W284 Pappajohn Business Bldg,21 E Market St, Iowa City, IA 52242 USA
[2] Univ Tokyo, Grad Sch Econ, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
关键词
Bias correction; Incidental parameters problem; Panel data; Quantile regression; Smoothing; BIAS REDUCTION; COVARIANCE-MATRIX; MODELS; STATIONARY; ESTIMATORS;
D O I
10.1016/j.jeconom.2016.01.008
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper studies fixed effects estimation of quantile regression models for panel data. Under an asymptotic framework where both the numbers of individuals and time periods grow at the same rate, we show that the fixed-effects estimator for the smoothed objective function has a limiting normal distribution with a bias in the mean, and provide the analytic form of the asymptotic bias. We propose a one-step bias correction estimator based on the analytic bias formula obtained from the asymptotic analysis. Importantly, our results cover the case that observations are dependent over time. We illustrate the effects of the bias correction through simulations. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:92 / 112
页数:21
相关论文
共 50 条
  • [21] Smoothed quantile regression for censored residual life
    Kyu Hyun Kim
    Daniel J. Caplan
    Sangwook Kang
    [J]. Computational Statistics, 2023, 38 : 1001 - 1022
  • [22] Smoothed quantile regression analysis of competing risks
    Choi, Sangbum
    Kang, Sangwook
    Huang, Xuelin
    [J]. BIOMETRICAL JOURNAL, 2018, 60 (05) : 934 - 946
  • [23] Smoothed quantile regression for censored residual life
    Kim, Kyu Hyun
    Caplan, Daniel J.
    Kang, Sangwook
    [J]. COMPUTATIONAL STATISTICS, 2023, 38 (02) : 1001 - 1022
  • [24] Smoothed empirical likelihood for quantile regression models with response data missing at random
    Shuanghua Luo
    Changlin Mei
    Cheng-yi Zhang
    [J]. AStA Advances in Statistical Analysis, 2017, 101 : 95 - 116
  • [25] Penalized weighted smoothed quantile regression for high-dimensional longitudinal data
    Song, Yanan
    Han, Haohui
    Fu, Liya
    Wang, Ting
    [J]. STATISTICS IN MEDICINE, 2024, 43 (10) : 2007 - 2042
  • [26] Nonparametric inference on smoothed quantile regression process
    Hao, Meiling
    Lin, Yuanyuan
    Shen, Guohao
    Su, Wen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [27] Shrinkage quantile regression for panel data with multiple structural breaks
    Zhang, Liwen
    Zhu, Zhoufan
    Feng, Xingdong
    He, Yong
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (03): : 820 - 851
  • [28] A panel data quantile regression analysis of the impact of corruption on tourism
    Lv, Zhike
    Xu, Ting
    [J]. CURRENT ISSUES IN TOURISM, 2017, 20 (06) : 603 - 616
  • [29] Penalized quantile regression for spatial panel data with fixed effects
    Zhang, Yuanqing
    Jiang, Jiayuan
    Feng, Yaqin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (04) : 1287 - 1299
  • [30] Nonparametric Quantile Regression for Homogeneity Pursuit in Panel Data Models
    Zhang, Xiaoyu
    Wang, Di
    Lian, Heng
    Li, Guodong
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (04) : 1238 - 1250