Constitutive modelling of strength and plasticity of nanocrystalline metallic materials

被引:59
|
作者
Kim, HS [1 ]
Estrin, Y
Bush, MB
机构
[1] Chungnam Natl Univ, Dept Met Engn, Taejon 305764, South Korea
[2] Tech Univ Clausthal, Inst Werkstoffkunde & Werkstofftechn, D-38678 Clausthal Zellerfeld, Germany
[3] Univ Western Australia, Dept Mech & Mat Engn, Nedlands, WA 6907, Australia
关键词
nanocrystalline materials; plastic deformation; phase mixture model; constitutive model; grain size distribution;
D O I
10.1016/S0921-5093(01)01246-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A phase mixture model is proposed to describe the deformation behaviour of a nanocrystalline metallic material. The deformation behaviour of the crystallite phase is described by constitutive equations based on dislocation density evolution and includes a contribution from diffusion controlled plastic flow. The dislocation glide contribution to the plastic strain rate is considered to vanish below a certain critical grain size. The grain boundary material, which is treated as a separate phase, is considered to deform by a diffusional mechanism, resulting in a viscous Newtonian behaviour. The strain in both phases is assumed to be the same and equal to the imposed macroscopic strain. The stress is calculated using a simple rule of mixtures. The grain size dependence of the stress-strain curves obtained is shown to be in reasonable agreement with experiments, as are the predicted strain rate effects. In particular, observed deviations from the Hall-Petch behaviour are described by the model correctly. The effect of grain size distribution is also considered. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:195 / 199
页数:5
相关论文
共 50 条