Analysis of embrittlement of WWER-1000 RPV materials

被引:31
|
作者
Margolin, B. Z. [1 ]
Nikolayev, V. A. [1 ]
Yurchenko, E. V. [1 ]
Nikolayev, Yu A. [2 ]
Erak, D. Yu [2 ]
Nikolayeva, A. V. [2 ]
机构
[1] CRISM Prometey, St Petersburg 191015, Russia
[2] NRC Kurchatov Inst, Moscow, Russia
关键词
WWER-1000; reactor; Thermal aging; Neutron irradiation; Radiation embrittlement; Alloying elements; PROMETEY LOCAL APPROACH; BRITTLE-FRACTURE; RADIATION EMBRITTLEMENT;
D O I
10.1016/j.ijpvp.2011.11.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Analysis of embrittlement for WWER-1000 RPV materials is performed on the basis of available and original experimental data. Contributions of thermal aging and neutron irradiation to embrittlement are considered for base and weld metals. Equations have been obtained for the shift of the critical temperature of brittleness as a function of irradiation time and neutron fluence. For weld metal with high nickel content the dependence of the radiation embrittlement coefficient on the content of alloying elements affecting material embrittlement such as nickel, manganese and silicon has been obtained. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:178 / 186
页数:9
相关论文
共 50 条
  • [21] PROBABILITY OF RUPTURE FOR WWER-1000 MAIN PIPING
    Dubyk, Yaroslav
    Zarazovskii, Maksym
    Ageiev, Sergii
    Filonov, Vladislav
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE2020), VOL 2, 2020,
  • [22] Interpretation of Accelerated Irradiation Results for Materials of WWER-1000 Reactor Pressure Vessels
    Erak, D. Yu.
    Zhurko, D. A.
    Papina, V. B.
    STRENGTH OF MATERIALS, 2013, 45 (04) : 424 - 432
  • [23] Interpretation of Accelerated Irradiation Results for Materials of WWER-1000 Reactor Pressure Vessels
    D. Yu. Erak
    D. A. Zhurko
    V. B. Papina
    Strength of Materials, 2013, 45 : 424 - 432
  • [24] Destructive analysis of the nuclide composition of spent fuel of WWER-440, WWER-1000, and RBMK-1000 reactors
    Makarova T.P.
    Bibichev B.A.
    Domkin V.D.
    Radiochemistry, 2008, 50 (4) : 414 - 426
  • [25] ANALYSIS OF NUCLEAR SAFETY IN DIVERSIFICATION OF WESTINGHOUSE FUEL ASSEMBLIES AT WWER-1000
    Skalozubov, V. I.
    Kozlov, I. L.
    Komarov, Yu. A.
    Gryb, V. Yu.
    Vashchenko, V. M.
    NUCLEAR PHYSICS AND ATOMIC ENERGY, 2020, 21 (02): : 213 - 214
  • [26] Failure analysis of collector body in WWER-1000 nuclear power plants
    Dashti, H. G.
    Hashemi, B.
    ENGINEERING FAILURE ANALYSIS, 2010, 17 (06) : 1377 - 1388
  • [27] An approach to stability analysis of spatial xenon oscillations in WWER-1000 reactors
    Parhizkari, H.
    Aghaie, M.
    Zolfaghari, A.
    Minuchehr, A.
    ANNALS OF NUCLEAR ENERGY, 2015, 79 : 125 - 132
  • [28] ANALYSIS OF NUCLEAR SAFETY IN DIVERSIFICATION OF WESTINGHOUSE FUEL ASSEMBLIES AT WWER-1000
    Skalozubov, V., I
    Kozlov, I. L.
    Komarov, Yu A.
    Chulkin, O. A.
    Piontkovkyi, O., I
    NUCLEAR PHYSICS AND ATOMIC ENERGY, 2019, 20 (02): : 159 - 163
  • [29] SIMULATION AND ANALYSIS OF A WWER-1000 REACTOR UNDER NORMAL AND TRANSIENT CONDITIONS
    Baghban, Ghonche
    Shayesteh, Mohsen
    Bahonar, Majid
    Sayareh, Reza
    NUCLEAR TECHNOLOGY & RADIATION PROTECTION, 2016, 31 (03): : 207 - 217
  • [30] BRITTLE FRACTURE PROBABILISTIC ASSESSMENT OF WWER-1000 RPVs
    Orynyak, Igor
    Zarazovskii, Maksym
    Batura, Anatolii
    Borodii, Mykhaylo
    Danil'chuk, Evgen
    ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2014, VOL 3, 2014,