Investigation on fretting fatigue crack initiation in heterogenous materials using a hybrid of multiscale homogenization and direct numerical simulation

被引:24
|
作者
Wang, Can [1 ]
Li, Chao [1 ]
Ling, Yong [1 ]
Wahab, Magd Abdel [2 ]
机构
[1] Univ Ghent, Fac Engn & Architecture, Dept Elect Energy Met Mech Construct & Syst, Soete Lab, Ghent, Belgium
[2] Van Lang Univ, Fac Engn, Ho Chi Minh City, Vietnam
关键词
Fretting fatigue; Heterogeneity; Multiscale Homogenization; Direct Numerical Simulation; Critical plane method; Extend averaging method; CRITICAL PLANE APPROACH; PROPAGATION LIFETIME; MESHFREE METHOD; PREDICTION; MECHANICS; DAMAGE; PARTICLES; NUCLEATION; CRITERION; PARAMETER;
D O I
10.1016/j.triboint.2022.107470
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Fretting fatigue commonly appears at mechanically fastened joints, and it will dramatically decrease the fatigue life of a structure. Thus, the improvement of the prediction accuracy of fretting fatigue behavior is necessary. Furthermore, defects, e.g. particles and micro-voids, always affect the macroscopic material properties and the fatigue life. In this paper, the authors consider the heterogeneity of material in fretting fatigue numerical simulations, using a combination between Multiscale Homogenization and Direct Numerical Simulation (MH-DNS). The Damage Parameter (DP) is calculated using critical plane method and averaging method in order to get a good prediction of fretting fatigue life. Moreover, the maximum value of DP may be changed from the contact surface to the edge of the micro-void through this study using three different models. The three models are: 1) homogeneous model, 2) heterogeneous model using multi-scale homogenization, and 3) heterogeneous model using a hybrid MH-DNS. The MH-DNS model shows the best-predicted results among all other models using CP method and extend averaging method.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Numerical simulation of fatigue crack propagation interacting with micro-defects using multiscale XFEM
    Liu, Guangzhong
    Zhou, Dai
    Guo, Jiamin
    Bao, Yan
    Han, Zhaolong
    Lu, Jiabao
    INTERNATIONAL JOURNAL OF FATIGUE, 2018, 109 : 70 - 82
  • [22] Fretting fatigue crack initiation behaviour in heterogeneous materials under out-of-phase loading
    Wang, Can
    Wang, Dagang
    Wahab, Magd Abdel
    TRIBOLOGY INTERNATIONAL, 2022, 171
  • [23] Fretting fatigue crack initiation lifetime predictor tool: Using damage mechanics approach
    Hojjati-Talemi, Reza
    Wahab, Magd Abdel
    TRIBOLOGY INTERNATIONAL, 2013, 60 : 176 - 186
  • [24] Prediction of fretting fatigue crack initiation location and direction using cohesive zone model
    Pereira, K.
    Bhatti, N.
    Wahab, M. Abdel
    TRIBOLOGY INTERNATIONAL, 2018, 127 : 245 - 254
  • [25] Multi-Scale Analysis of Fretting Fatigue in Heterogeneous Materials Using Computational Homogenization
    Papagianni, Dimitra
    Wahab, Magd Abdel
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 62 (01): : 79 - 97
  • [26] Numerical prediction of fretting fatigue crack trajectory in a railway axle using XFEM
    Carlos Martinez, Juan
    Vanegas Useche, Libardo Vicente
    Wahab, Magd Abdel
    INTERNATIONAL JOURNAL OF FATIGUE, 2017, 100 : 32 - 49
  • [27] Numerical Simulation of Fatigue Crack Propagation Using XFEM
    Shibanuma, Kazuki
    Suzuki, Katsuyuki
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2014, 100 (11): : 820 - 827
  • [28] Fretting fatigue crack initiation behavior using process volume approach and finite element analysis
    Naboulsi, S
    Mall, S
    TRIBOLOGY INTERNATIONAL, 2003, 36 (02) : 121 - 131
  • [29] Investigation of fatigue crack closure using multiscale image correlation experiments
    Carroll, J.
    Efstathiou, C.
    Lambros, J.
    Sehitoglu, H.
    Hauber, B.
    Spottswood, S.
    Chona, R.
    ENGINEERING FRACTURE MECHANICS, 2009, 76 (15) : 2384 - 2398
  • [30] Experimental and numerical study on the multi-site fretting fatigue crack initiation of press-fitted axles
    Zou, Lang
    Zeng, Dongfang
    Tian, Xu
    Jiang, Guangyao
    Dong, Yihui
    Zhao, Hai
    Lu, Liantao
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2024, 47 (02) : 473 - 490