Reinforcement learning in non-Markovian environments using automatic discovery of subgoals

被引:0
|
作者
Dung, Le Tien
Komeda, Takashi
Takagi, Motoki
机构
来源
PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-8 | 2007年
关键词
selected keywords relevant to the subject;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Learning time is always a critical issue in Reinforcement Learning, especially when Recurrent Neural Networks (RNNs) are used to predict Q values. By creating useful subgoals, we can speed up learning performance. In this paper, we propose a method to accelerate learning in non-Markovian environments using automatic discovery of subgoals. Once subgoals are created, sub-policies use RNNs to attain them `1hen learned RNNs are integrated into the main RNN as experts. Finally, the agent continues to learn using its new policy. Experiment results of the E maze problem and the virtual office problem show the potential of this approach.
引用
收藏
页码:2592 / 2596
页数:5
相关论文
共 50 条
  • [21] Quantum discord in non-Markovian environments
    Xiao, Xing
    Fang, Mao-Fa
    Li, Yan-Ling
    Kang, Guo-Dong
    Wu, Chao
    OPTICS COMMUNICATIONS, 2010, 283 (14) : 3001 - 3005
  • [22] Protecting entanglement by detuning: in Markovian environments vs in non-Markovian environments
    Huang Li-Yuan
    Fang Mao-Fa
    CHINESE PHYSICS B, 2010, 19 (09)
  • [23] Protecting entanglement by detuning:in Markovian environments vs in non-Markovian environments
    黄利元
    方卯发
    Chinese Physics B, 2010, 19 (09) : 182 - 186
  • [24] Reinforcement learning in episodic non-stationary Markovian environments
    Choi, SPM
    Zhang, NL
    Yeung, DY
    IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS, 2004, : 752 - 758
  • [25] Non-Markovian to Markovian decay in structured environments with correlated disorder
    Monteiro, Mariana O.
    Bernardes, Nadja K.
    Broni, Eugene M.
    de Moura, Francisco A. B. F.
    Almeida, Guilherme M. A.
    PHYSICAL REVIEW A, 2025, 111 (02)
  • [26] Transition from non-Markovian to Markovian dynamics for generic environments
    Garrido, Nephtali
    Gorin, Thomas
    Pineda, Carlos
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [27] Quantum non-Markovian "casual bystander" environments
    Budini, Adrian A.
    PHYSICAL REVIEW A, 2021, 104 (06)
  • [28] Efficient Experience Reuse in Non-Markovian Environments
    Dung, Le Tien
    Komeda, Takashi
    Takagi, Motoki
    2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 3196 - +
  • [29] ENHANCED QUANTUM TELEPORTATION IN NON-MARKOVIAN ENVIRONMENTS
    Hao, Xiang
    Zhu, Shiqun
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2012, 10 (05)
  • [30] Decoherence strength of multiple non-Markovian environments
    Fleming, C. H.
    Hu, B. L.
    Roura, Albert
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (17) : 4206 - 4214