Ordinal Regression Models in Psychology: A Tutorial

被引:311
|
作者
Buerkner, Paul-Christian [1 ]
Vuorre, Matti [2 ]
机构
[1] Univ Munster, Dept Psychol, Fliednerstr 21, D-48149 Munster, Germany
[2] Columbia Univ, Dept Psychol, New York, NY 10027 USA
关键词
ordinal models; Likert items; brms; R; open data; open materials; CROSS-VALIDATION; ITEM RESPONSE; RASCH MODEL; R PACKAGE; EQUIVALENCE; CONFIDENCE; STATISTICS;
D O I
10.1177/2515245918823199
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Ordinal variables, although extremely common in psychology, are almost exclusively analyzed with statistical models that falsely assume them to be metric. This practice can lead to distorted effect-size estimates, inflated error rates, and other problems. We argue for the application of ordinal models that make appropriate assumptions about the variables under study. In this Tutorial, we first explain the three major classes of ordinal models: the cumulative, sequential, and adjacent-category models. We then show how to fit ordinal models in a fully Bayesian framework with the R package brms, using data sets on opinions about stem-cell research and time courses of marriage. The appendices provide detailed mathematical derivations of the models and a discussion of censored ordinal models. Compared with metric models, ordinal models provide better theoretical interpretation and numerical inference from ordinal data, and we recommend their widespread adoption in psychology.
引用
收藏
页码:77 / 101
页数:25
相关论文
共 50 条
  • [1] Regression Models for Ordinal Outcomes
    French, Benjamin
    Shotwell, Matthew S.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2022, 328 (08): : 772 - 773
  • [2] Ordered Regression Models: a Tutorial
    Andrew S. Fullerton
    Kathryn Freeman Anderson
    [J]. Prevention Science, 2023, 24 : 431 - 443
  • [3] Ordered Regression Models: a Tutorial
    Fullerton, Andrew S.
    Anderson, Kathryn Freeman
    [J]. PREVENTION SCIENCE, 2023, 24 (03) : 431 - 443
  • [4] REGRESSION-MODELS FOR ORDINAL DATA
    MCCULLAGH, P
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1980, 42 (02): : 109 - 142
  • [5] Ordinal Regression Models for Continuous Scales
    Manuguerra, Maurizio
    Heller, Gillian Z.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (01):
  • [6] Random effects in ordinal regression models
    Tutz, G
    Hennevogl, W
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1996, 22 (05) : 537 - 557
  • [7] Ordinal response regression models in ecology
    Guisan, A
    Harrell, FE
    [J]. JOURNAL OF VEGETATION SCIENCE, 2000, 11 (05) : 617 - 626
  • [8] REGRESSION-MODELS WITH ORDINAL VARIABLES
    WINSHIP, C
    MARE, RD
    [J]. AMERICAN SOCIOLOGICAL REVIEW, 1984, 49 (04) : 512 - 525
  • [9] Bayesian Quantile Regression for Ordinal Models
    Rahman, Mohammad Arshad
    [J]. BAYESIAN ANALYSIS, 2016, 11 (01): : 1 - 24
  • [10] Ordinal regression: A review and a taxonomy of models
    Tutz, Gerhard
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (02):