Empirical mode decomposition and convolutional neural network-based approach for diagnosing psychotic disorders from eeg signals

被引:17
|
作者
Zulfikar, Aslan [1 ]
Mehmet, Akin [2 ]
机构
[1] Gaziantep Univ, Vocat Sch Tech Sci, TR-27310 Gaziantep, Turkey
[2] Dicle Univ, Elect Elect Engn, Fac Engn, TR-21280 Diyarbakir, Turkey
关键词
EEG; Schizophrenia; EMD; Hilbert Huang Transform; Deep Learning; SCHIZOPHRENIA; CLASSIFICATION; COMPLEXITY; SPECTRUM;
D O I
10.1007/s10489-022-03252-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Psychotic disorders are mental disorders that negatively affect human life. Diagnosis of psychotic patients is usually done in consultation with the patient, and this is a time-consuming process. In this study, a Computer Aided Diagnosis (CAD) system that will support expert opinion with automatic diagnosis of schizophrenia (SZ) disease, which is the leading psychotic disorder, is presented. In this study, Hilbert Huang Transform (HHT) method was used to analyze the non-stationary and non-periodic structure of EEG (Electroencephalograph) signals in the best way. The data set we used in our study includes 19-channel EEG signals from 28 (14 SZ and 14 healthy controls) participants, and the second data set includes 16-channel EEG signals from 84 (45 SZ and 39 healthy controls) participants. First of all, HS (Hilbert Spectrum) images of the first four Intrinsic Mode Functions (IMF) components obtained by applying Empirical Mode Decomposition (EMD) to EEG signals were created. These images were then classified with the VGG16 pre-trained Convolutional Neural Network (CNN) network. With our proposed method, the highest classification performance was obtained as 98.2% for Dataset I and 96.02% for Dataset II, respectively, by training the HS images obtained from the IMF 1 component with the VGG16 pre-trained CNN network. In the next step, classification performances were tested with VGG16, XCeption, DenseNet121, ResNet152 and Inception V3 pre-trained CNN networks. The high classification success achieved by the proposed method in our study demonstrates the accuracy of the model in distinguishing between SZ and healthy control.
引用
收藏
页码:12103 / 12115
页数:13
相关论文
共 50 条
  • [21] Convolutional Neural Network Based Approach Towards Motor Imagery Tasks EEG Signals Classification
    Chaudhary, Shalu
    Taran, Sachin
    Bajaj, Varun
    Sengur, Abdulkadir
    IEEE SENSORS JOURNAL, 2019, 19 (12) : 4494 - 4500
  • [22] Classification of Motor Imagery EEG Signals Based on Deep Autoencoder and Convolutional Neural Network Approach
    Hwaidi, Jamal F.
    Chen, Thomas M.
    IEEE ACCESS, 2022, 10 : 48071 - 48081
  • [23] Diagnosing Grass Seed Infestation: Convolutional Neural Network-Based Terahertz Imaging
    Wang, Qigejian
    Goay, Amus Chee Yuen
    Mishra, Deepak
    Goldys, Ewa M.
    Atakaramians, Shaghik
    IEEE ACCESS, 2025, 13 : 16094 - 16102
  • [24] A neural network-based classification model for partial epilepsy by EEG signals
    Sahin, Cenk
    Ogulata, Seyfettin Noyan
    Aslan, Kezban
    Bozdemir, Hacer
    Erol, Rizvan
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2008, 22 (05) : 973 - 985
  • [25] Convolutional Neural Network-Based Approach for Citrus Diseases Recognition
    Dong, Caixia
    Xu, Zheling
    Dai, Luanyuan
    Liu, Weinan
    Chen, Quan
    Liu, Yizhang
    Yang, Changcai
    Zou, Tengyue
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 1495 - 1499
  • [26] A Convolutional Neural Network based self-learning approach for classifying neurodegenerative states from EEG signals in dementia
    Ieracitano, Cosimo
    Mammone, Nadia
    Hussain, Amir
    Morabito, Francesco Carlo
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [27] Seizure detection from EEG signals using Multivariate Empirical Mode Decomposition
    Zahra, Asmat
    Kanwal, Nadia
    Rehman, Naveed ur
    Ehsan, Shoaib
    McDonald-Maier, Klaus D.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 88 : 132 - 141
  • [28] Emotion recognition from EEG signals by using multivariate empirical mode decomposition
    Ahmet Mert
    Aydin Akan
    Pattern Analysis and Applications, 2018, 21 : 81 - 89
  • [29] Emotion recognition from EEG signals by using multivariate empirical mode decomposition
    Mert, Ahmet
    Akan, Aydin
    PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (01) : 81 - 89
  • [30] Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
    Gao, Yunyuan
    Gao, Bo
    Chen, Qiang
    Liu, Jia
    Zhang, Yingchun
    FRONTIERS IN NEUROLOGY, 2020, 11