Extended Mixed-Effects Item Response Models With the MH-RM Algorithm

被引:29
|
作者
Chalmers, R. Philip [1 ]
机构
[1] York Univ, Toronto, ON M3J 1P3, Canada
关键词
PACKAGE; ISSUES;
D O I
10.1111/jedm.12072
中图分类号
G44 [教育心理学];
学科分类号
0402 ; 040202 ;
摘要
A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for increased dimensionality due to modeling multiple design- and trait-based random effects. As a consequence of using this algorithm, more flexible explanatory IRT models, such as the multidimensional four-parameter logistic model, are easily organized and efficiently estimated for unidimensional and multidimensional tests. Rasch versions of the linear latent trait and latent regression model, along with their extensions, are presented and discussed, Monte Carlo simulations are conducted to determine the efficiency of parameter recovery of the MH-RM algorithm, and an empirical example using the extended mixed-effects IRT model is presented.
引用
收藏
页码:200 / 222
页数:23
相关论文
共 50 条
  • [31] Mixed-effects multivariate adaptive splines models
    Zhang, HP
    NONLINEAR ESTIMATION AND CLASSIFICATION, 2003, 171 : 297 - 306
  • [32] Estimating mixed-effects differential equation models
    L. Wang
    J. Cao
    J. O. Ramsay
    D. M. Burger
    C. J. L. Laporte
    J. K. Rockstroh
    Statistics and Computing, 2014, 24 : 111 - 121
  • [33] Nonlinear Mixed-Effects Models for PET Data
    Chen, Yakuan
    Goldsmith, Jeff
    Ogden, R. Todd
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (03) : 881 - 891
  • [34] Estimation and inference in functional mixed-effects models
    Antoniadis, Anestis
    Sapatinas, Theofanis
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (10) : 4793 - 4813
  • [35] Linear Mixed-Effects Models in chemistry: A tutorial
    Carnoli, Andrea Junior
    Lohuis, Petra oude
    Buydens, Lutgarde M. C.
    Tinnevelt, Gerjen H.
    Jansen, Jeroen J.
    ANALYTICA CHIMICA ACTA, 2024, 1304
  • [36] Application of mixed-effects models for exposure assessment
    Peretz, C
    Goren, A
    Smid, T
    Kromhout, H
    ANNALS OF OCCUPATIONAL HYGIENE, 2002, 46 (01): : 69 - 77
  • [37] Influence analyses of nonlinear mixed-effects models
    Lee, SY
    Xu, L
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (02) : 321 - 341
  • [38] Linear transformations of linear mixed-effects models
    Morrell, CH
    Pearson, JD
    Brant, LJ
    AMERICAN STATISTICIAN, 1997, 51 (04): : 338 - 343
  • [39] Mixed-effects models and the drug titration paradox
    Minto, Charles F.
    Schnider, Thomas W.
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2023, 12 (04): : 429 - 429
  • [40] Estimation in mixed-effects functional ANOVA models
    Rady, E. A.
    Kilany, N. M.
    Eliwa, S. A.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 133 : 346 - 355