Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: The importance of the A structure

被引:53
|
作者
Kozlov, IA
Politis, PK
Van Aerschot, A
Busson, R
Herdewijn, P
Orgel, LE
机构
[1] Salk Inst Biol Studies, San Diego, CA 92186 USA
[2] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
[3] Katholieke Univ Leuven, Rega Inst, Med Chem Lab, B-3000 Louvain, Belgium
关键词
D O I
10.1021/ja983958r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hexitol nucleic acid (HNA) is an analogue of DNA containing the standard nucleoside bases, but with a phosphorylated 1,5-anhydrohexitol backbone. HNA oligomers form duplexes having the nucleic acid A structure with complementary DNA or RNA oligomers. The HNA decacytidylate oligomer is an efficient template for the oligomerization of the 5'-phosphoroimidazolides of guanosine or deoxyguanosine. Comparison of the oligomerization efficiencies on HNA, RNA, and DNA decacytidylate templates under various conditions suggests strongly that only nucleic acid double helices with the A structure support efficient template-directed synthesis when 5'-phosphoroimidazolides of nucleosides are used as substrates.
引用
收藏
页码:2653 / 2656
页数:4
相关论文
共 50 条
  • [41] Structure-Activity Relationships in Nonenzymatic Template-Directed RNA Synthesis
    Giurgiu, Constantin
    Fang, Ziyuan
    Aitken, Harry R. M.
    Kim, Seohyun Chris
    Pazienza, Lydia
    Mittal, Shriyaa
    Szostak, Jack W.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (42) : 22925 - 22932
  • [42] Module Strategy for Peptide Ribonucleic Acid (PRNA)-DNA and PRNA-Peptide Nucleic Acid (PNA)-DNA Chimeras: Synthesis and Interaction of Chimeras with DNA and RNA
    Uematsu, Ryohei
    Inagaki, Masahito
    Asai, Mitsuo
    Sugai, Hiroka
    Maeda, Yoshiki
    Nagami, Akira
    Sato, Hirofumi
    Sakamoto, Seiji
    Araki, Yasuyuki
    Nishijima, Masaki
    Inoue, Yoshihisa
    Wada, Takehiko
    CHEMISTRY LETTERS, 2016, 45 (03) : 350 - 352
  • [43] Rapid Chemical Ligation of DNA and Acyclic Threoninol Nucleic Acid (aTNA) for Effective Nonenzymatic Primer Extension
    Okita, Hikari
    Kondo, Shuto
    Murayama, Keiji
    Asanuma, Hiroyuki
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (32) : 17872 - 17880
  • [44] NUCLEIC-ACID SYNTHESIS INDUCED BY A SMALL RNA VIRUS
    BEDBROOK, JR
    MATTHEWS, RE
    CHEMISTRY IN NEW ZEALAND, 1974, 38 (04): : 117 - 117
  • [45] NUCLEIC-ACID SYNTHESIS - PINYIN TRANSFER-RNA
    GRIFFIN, B
    LINDAHL, T
    NATURE, 1983, 304 (5925) : 393 - 393
  • [46] INHIBITORS ACTING ON NUCLEIC ACID SYNTHESIS IN AN ONCOGENIC RNA VIRUS
    MULLER, WEG
    ZAHN, RK
    SEIDEL, HJ
    NATURE-NEW BIOLOGY, 1971, 232 (31): : 143 - &
  • [47] DNA nanotechnology for nucleic acid analysis: multifunctional molecular DNA machine for RNA detection
    Cox, A. J.
    Bengtson, H. N.
    Rohde, K. H.
    Kolpashchikov, D. M.
    CHEMICAL COMMUNICATIONS, 2016, 52 (99) : 14318 - 14321
  • [48] Nucleic acid vaccines: A new era for RNA and DNA vaccines and immunotherapies
    Pavlakis, G. N.
    FEBS OPEN BIO, 2022, 12 : 63 - 63
  • [49] Peptide and Peptide Nucleic Acid Syntheses Using a DNA/RNA Synthesizer
    Pokharel, Durga
    Fueangfung, Suntara
    Zhang, Mingcui
    Fang, Shiyue
    BIOPOLYMERS, 2014, 102 (06) : 487 - 493
  • [50] THE ELECTRONIC STRUCTURE OF DESOXYRIBONUCLEIC ACID (DNA) AND RIBONUCLEIC ACID (RNA) - REACTION OF DNA-DNA AND DNA-RNA
    GOUDOT, A
    ZHURNAL FIZICHESKOI KHIMII, 1964, 38 (12): : 2774 - 2783