Matrix pencil generated by a tensor product from two matrix pencils

被引:0
|
作者
Gracia, JM [1 ]
deElguea, LO [1 ]
Sodupe, MJ [1 ]
机构
[1] UNIV BASQUE COUNTRY, FAC CIENCIAS, DEPT MATEMAT, E-48080 BILBAO, SPAIN
关键词
D O I
10.1016/0024-3795(95)00364-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A(i), B-i (i = 1, 2) be m(i) x n(i) complex matrices. We give a criterion for the regularity of the pencil lambda A(1) x A(2) - B-1 x B-2, and obtain the Weierstrass-Kronecker canonical form of this pencil from that of lambda A(i) - B-i, i = 1,2. Examples are given which illustrate our results. (C) Elsevier Science Inc., 1996
引用
收藏
页码:289 / 310
页数:22
相关论文
共 50 条
  • [31] On the geometry of symplectic matrix pencils
    Carpanese, N
    SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, : 243 - 247
  • [32] Matrix pencils completion problems
    Dodig, Marija
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (01) : 259 - 304
  • [33] S Matrix from Matrix Product States
    Vanderstraeten, Laurens
    Haegeman, Jutho
    Osborne, Tobias J.
    Verstraete, Frank
    PHYSICAL REVIEW LETTERS, 2014, 112 (25)
  • [34] MATRIX PENCIL EQUIVALENTS OF A GENERAL POLYNOMIAL MATRIX
    HAYTON, GE
    WALKER, AB
    PUGH, AC
    INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (06) : 1979 - 1987
  • [35] Extremal matrix states on tensor product of C*-algebras
    Wu, Wei
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (03): : 477 - 491
  • [36] Information-theoretic limits for the matrix tensor product
    Reeves G.
    IEEE Journal on Selected Areas in Information Theory, 2020, 1 (03): : 777 - 798
  • [37] NATURAL TENSOR PRODUCT INTERPOLATION FORMULA AND PSEUDOINVERSE OF A MATRIX
    THOMAS, DH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 13 (03) : 239 - 250
  • [38] A tensor product of 3-matrix factorizations of polynomials
    Fomatati, Yves Baudelaire
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [39] Tensor Completion Via Optimization on the Product of Matrix Manifolds
    Girson, Josh
    Aeron, Shuchin
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 177 - 180
  • [40] A tensor product matrix approximation problem in quantum physics
    Dahl, Geir
    Leinaas, Jon Magne
    Myrheim, Jan
    Ovrum, Eirik
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 711 - 725