Modeling with general subdivision meshes

被引:0
|
作者
Purgathofer, W [1 ]
机构
[1] Vienna Tech Univ, Comp Graph Grp, A-1040 Vienna, Austria
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
下载
收藏
页码:59 / 59
页数:1
相关论文
共 50 条
  • [41] Interpolatory Catmull-Clark volumetric subdivision over unstructured hexahedral meshes for modeling and simulation applications
    Xie, Jin
    Xu, Jinlan
    Dong, Zhenyu
    Xu, Gang
    Deng, Chongyang
    Mourrain, Bernard
    Zhang, Yongjie Jessica
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 80
  • [42] Biorthogonal wavelets based on gradual subdivision of quadrilateral meshes
    Wang, Huawei
    Tang, Kai
    Qin, Kaihuai
    COMPUTER AIDED GEOMETRIC DESIGN, 2008, 25 (09) : 816 - 836
  • [43] Constrained Tetrahedral Subdivision for Arbitrary Polygonal Prismatic Meshes
    Yin, Xiaotian
    Guo, Yang
    Li, Jian
    Gu, Xianfeng
    26TH INTERNATIONAL MESHING ROUNDTABLE, (IMR26 2017), 2017, 203 : 53 - 64
  • [44] An interpolatory subdivision scheme for triangular meshes and progressive transmission
    Ling, Ruotian
    Luo, Xiaonan
    Chen, Ren
    Zheng, Guifeng
    INTERACTIVE TECHNOLOGIES AND SOCIOTECHNICAL SYSTEMS, 2006, 4270 : 242 - 252
  • [45] Interpolating meshes of boundary intersecting curves by subdivision surfaces
    Ahmad H. Nasri
    The Visual Computer, 2000, 16 : 3 - 14
  • [46] Improved Butterfly Subdivision Scheme for Meshes with Arbitrary Topology
    张辉
    马永有
    张成
    蒋寿伟
    Journal of Beijing Institute of Technology, 2005, (02) : 217 - 220
  • [47] Interpolating meshes of boundary intersecting curves by subdivision surfaces
    Nasri, AH
    VISUAL COMPUTER, 2000, 16 (01): : 3 - 14
  • [48] Refining triangle meshes by non-linear subdivision
    Karbacher, S
    Seeger, S
    Häusler, G
    THIRD INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING, PROCEEDINGS, 2001, : 270 - 277
  • [49] Interpolatory subdivision scheme for triangular meshes with bounded curvature
    Computer Application Institute, Sun Yat-Sen University, Guangzhou 510275, China
    不详
    J. Inf. Comput. Sci., 2007, 2 (597-608):
  • [50] Feature-Adaptive and Hierarchical Subdivision Gradient Meshes
    Zhou, J.
    Hettinga, G. J.
    Houwink, S.
    Kosinka, J.
    COMPUTER GRAPHICS FORUM, 2022, 41 (01) : 389 - 401