Modeling with general subdivision meshes

被引:0
|
作者
Purgathofer, W [1 ]
机构
[1] Vienna Tech Univ, Comp Graph Grp, A-1040 Vienna, Austria
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:59 / 59
页数:1
相关论文
共 50 条
  • [1] Modeling subdivision control meshes for creating cartoon faces
    Skaria, S
    Akleman, E
    Parke, FI
    [J]. INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS, PROCEEDING, 2001, : 216 - +
  • [2] An Adjustable Adaptive Subdivision Surface Modeling Based on Triangle Meshes
    Gao Weijun
    [J]. EBM 2010: INTERNATIONAL CONFERENCE ON ENGINEERING AND BUSINESS MANAGEMENT, VOLS 1-8, 2010, : 5893 - 5896
  • [3] An Adjustable Adaptive Subdivision Surface Modeling Based on Triangle Meshes
    Zhao, Fuqing
    Ai, Xin
    [J]. ADVANCED MECHANICAL ENGINEERING, PTS 1 AND 2, 2010, 26-28 : 702 - 705
  • [4] Displaced subdivision meshes
    Hussain, M
    Okada, Y
    Niijima, K
    [J]. PROCEEDINGS OF THE FIFTEENTH IASTED INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, 2004, : 497 - 502
  • [5] √2 Subdivision for quadrilateral meshes
    Guiqing Li
    Weiyin Ma
    Hujun Bao
    [J]. The Visual Computer, 2004, 20 : 180 - 198
  • [6] √2 subdivision for quadrilateral meshes
    Li, GQ
    Ma, WY
    Bao, HJ
    [J]. VISUAL COMPUTER, 2004, 20 (2-3): : 180 - 198
  • [7] A subdivision scheme for hexahedral meshes
    Bajaj, C
    Schaefer, S
    Warren, J
    Xu, GL
    [J]. VISUAL COMPUTER, 2002, 18 (5-6): : 343 - 356
  • [8] Combinatorial properties of subdivision meshes
    Ivrissimtzis, I
    Seidel, HP
    [J]. MATHEMATICS OF SURFACES, PROCEEDINGS, 2003, 2768 : 73 - 84
  • [9] Incremental subdivision for triangle meshes
    Pakdel, Hamid-Reza
    Samavati, Faramarz F.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2007, 3 (01) : 80 - 92
  • [10] Ternary subdivision for quadrilateral meshes
    Ni, Tianyun
    Nasri, Ahmad H.
    Peter, Joerg
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2007, 24 (06) : 361 - 370