Frontal Face Classifier using AdaBoost with MCT Features

被引:0
|
作者
Yoon, Jongmin [1 ]
Kim, Daijin [1 ]
机构
[1] POSTECH, Dept Comp Sci & Engn, Pohang, South Korea
关键词
frontal face classification; adaboost; MCT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we describe how to classify frontal face from the results of face detection which include non-frontal faces. To do this, we use AdaBoost learning method with Modified Census Transform (MCT) to construct a two-class classifier. As a result of that, our frontal face classifier achieves high classification rate above 96% and fast performance about 10 frames/sec in mobile device.
引用
收藏
页码:2084 / 2087
页数:4
相关论文
共 50 条
  • [11] A Classifier Ensemble for Face Recognition Using Gabor Wavelet Features
    Parvin, Hamid
    Mozayani, Nasser
    Beigi, Akram
    COMPUTATIONAL INTELLIGENCE IN SECURITY FOR INFORMATION SYSTEMS, 2011, 6694 : 301 - 307
  • [12] iGlu_AdaBoost: Identification of Lysine Glutarylation Using the AdaBoost Classifier
    Dou, Lijun
    Li, Xiaoling
    Zhang, Lichao
    Xiang, Huaikun
    Xu, Lei
    JOURNAL OF PROTEOME RESEARCH, 2021, 20 (01) : 191 - 201
  • [13] Research on Video Face Detection based on AdaBoost algorithm Training classifier
    Yu, Meng
    Yun, Lijun
    Chen, Zaiqing
    Cheng, Feiyan
    PROCEEDINGS FIRST INTERNATIONAL CONFERENCE ON ELECTRONICS INSTRUMENTATION & INFORMATION SYSTEMS (EIIS 2017), 2017, : 386 - 391
  • [14] Construction of a classifier using AdaBoost for information filtering
    Yanagimoto, Hidekazu
    Omatu, Sigeru
    ARTIFICIAL LIFE AND ROBOTICS, 2005, 9 (02) : 72 - 75
  • [15] Offline Signature Verification Using Real Adaboost Classifier Combination of Pseudo-dynamic Features
    Hu, Juan
    Chen, Youbin
    2013 12TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2013, : 1345 - 1349
  • [16] Using PHOG fusion features and multi-class Adaboost classifier for human behavior recognition
    Ma S.-W.
    Liu L.-N.
    Fu Q.
    Wen J.-R.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2018, 26 (11): : 2827 - 2837
  • [17] Pose Estimation and Detection for Event Recognition using Sense-Aware Features and Adaboost Classifier
    Akhter, Israr
    Jalal, Ahmad
    Kim, Kibum
    PROCEEDINGS OF 2021 INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGIES (IBCAST), 2021, : 500 - 505
  • [18] Face Recognition Using Extended LBP Features and Multilevel SVM Classifier
    Sujay, S. N.
    Reddy, H. S. Manjunatha
    Ravi, J.
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2017, : 713 - 716
  • [19] Face Recognition Using Local Geometrical Features - PCA with Euclidean Classifier
    Khalid, Fatimah
    Tengku, Tengku Molid
    Omar, Khairuddin
    INTERNATIONAL SYMPOSIUM OF INFORMATION TECHNOLOGY 2008, VOLS 1-4, PROCEEDINGS: COGNITIVE INFORMATICS: BRIDGING NATURAL AND ARTIFICIAL KNOWLEDGE, 2008, : 1034 - +
  • [20] Two-stage classifier for face recognition using HOG features
    Chandrakala, M.
    Devi, P. Durga
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 5771 - 5775