STRICT SINGULARITY OF WEIGHTED COMPOSITION OPERATORS ON DERIVATIVE HARDY SPACES

被引:1
|
作者
Lin, Qingze [1 ]
Liu, Junming [1 ]
Wu, Yutian [2 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510520, Guangdong, Peoples R China
[2] Guangdong Univ Finance, Sch Financial Math & Stat, Guangzhou 510521, Guangdong, Peoples R China
来源
OPERATORS AND MATRICES | 2021年 / 15卷 / 03期
关键词
Volterra type operator; compactness; strict singularity; Hardy space; INVARIANT SUBSPACES;
D O I
10.7153/oam-2021-15-73
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the weighted composition operator W-phi,W-phi fixes an isomorphic copy of l(p) if the operator W-phi,W-phi is not compact on the derivative Hardy space S-p. In particular, this implies that the strict singularity of the operator W-phi,W-phi coincides with the compactness of it on S-p. Moreover, when p not equal 2, we characterize the conditions for those weighted composition operators W-phi,W-phi, on S-p which fix an isomorphic copy of l(2).
引用
收藏
页码:1171 / 1180
页数:10
相关论文
共 50 条