Uncertainty quantification for flow in highly heterogeneous porous media

被引:0
|
作者
Xiu, D [1 ]
Tartakovsky, DM [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Math Modelling & Anal Grp T7, Los Alamos, NM 87545 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Natural porous media are highly heterogeneous and characterized by parameters that are often uncertain due. to the lack of sufficient data. This uncertainty (randomness) occurs on a multiplicity of scales. We focus on geologic formations with the two dominant scales of uncertainty: a large-scale uncertainty in the spatial arrangement of geologic facies and a small-scale uncertainty in the parameters within each facies. We propose an approach that combines random domain decompositions (RDD) and polynomial chaos expansions (PCE) to account for the large- and small-scales of uncertainty, respectively. We present a general framework and use a one-dimensional flow example to demonstrate that our combined approach provides robust, non-perturbative approximations for the statistics of the system states.
引用
收藏
页码:695 / 703
页数:9
相关论文
共 50 条
  • [31] The flow of heterogeneous fluids through porous media
    Muscat, Morris
    Meres, Milan W.
    [J]. PHYSICS-A JOURNAL OF GENERAL AND APPLIED PHYSICS, 1936, 7 (01): : 346 - 363
  • [32] Characteristics of unsaturated flow in heterogeneous porous media
    Park, CK
    Sonu, J
    [J]. HYDROLOGIC MODELING, 1999, : 335 - 342
  • [33] Radially convergent flow in heterogeneous porous media
    SanchezVila, X
    [J]. WATER RESOURCES RESEARCH, 1997, 33 (07) : 1633 - 1641
  • [34] On adaptive BDDC for the flow in heterogeneous porous media
    Sousedik, Bedrich
    [J]. APPLICATIONS OF MATHEMATICS, 2019, 64 (03) : 309 - 334
  • [35] Ensemble variational Bayesian approximation for the inversion and uncertainty quantification of Darcy flows in heterogeneous porous media with random parameters
    Zhang, Zhao
    Liu, Piyang
    Liu, Ying
    Zeng, Tianyu
    Li, Menghan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 510
  • [36] Uncertainty quantification for mineral precipitation and dissolution in fractured porous media
    Michele Botti
    Alessio Fumagalli
    Anna Scotti
    [J]. GEM - International Journal on Geomathematics, 2023, 14
  • [37] A NUMERICAL FORMULATION FOR THE SIMULATION OF HIGHLY HETEROGENEOUS POROUS MEDIA
    Dias, R. A. C.
    Barboza Jr, R. P.
    Moraes, A. O. S.
    Fernandes, P. D.
    Thompson, R. L.
    Nieckele, A. O.
    [J]. JOURNAL OF POROUS MEDIA, 2023, 26 (06) : 13 - 30
  • [38] Uncertainty quantification for mineral precipitation and dissolution in fractured porous media
    Botti, Michele
    Fumagalli, Alessio
    Scotti, Anna
    [J]. GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2023, 14 (01)
  • [39] Deep Convolutional Encoder-Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media
    Mo, Shaoxing
    Zhu, Yinhao
    Zabaras, Nicholas
    Shi, Xiaoqing
    Wu, Jichun
    [J]. WATER RESOURCES RESEARCH, 2019, 55 (01) : 703 - 728
  • [40] Uncertainty quantification and sensitivity analysis for relative permeability models of two-phase flow in porous media
    Valdez, Andres Ricardo
    Rocha, Bernardo Martins
    Chapiro, Grigori
    dos Santos, Rodrigo Weber
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 192