Analysis of Liquid Organic Hydrogen Carrier Systems Properties of liquid organic hydrogen carriers, operation conditions and catalytic materials employed

被引:2
|
作者
Southall, Emma [1 ]
Lukashuk, Liliana [1 ]
机构
[1] Johnson Matthey, POB 1,Belasis Ave, Billingham TS23 1LB, Cleveland, England
来源
JOHNSON MATTHEY TECHNOLOGY REVIEW | 2022年 / 66卷 / 03期
关键词
BENZENE HYDROGENATION; DIBENZYL-TOLUENE; DEHYDROGENATION; STORAGE; METHYLCYCLOHEXANE; CYCLOHEXANE; LOHC; TRANSPORT; MEMBRANE; ENHANCEMENT;
D O I
10.1595/205651322X16415722152530
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid organic hydrogen carriers (LOHCs) provide attractive opportunities for hydrogen storage and transportation. In this study, a detailed examination of the most prominent LOHCs is performed, with a focus on their properties and scope for successful process implementation, as well as catalytic materials used for the hydrogenation and dehydrogenation steps. Different properties of each potential LOHC offer significant flexibility within the technology, allowing bespoke hydrogen storage and transportation solutions to be provided. Among different LOHC systems, dibenzyltoluene/perhydro-dibenzyltoluene has been identified as one of the most promising candidates for future deployment in commercial LOHC-based hydrogen storage and transport settings, based on its physical and toxicological properties, process conditions requirements, availability and its moderate cost. Platinum group metal (pgm)-based catalysts have been proven to catalyse both the hydrogenation and dehydrogenation steps for various LOHC systems, though base metal catalysts might have a potential for the technology.
引用
收藏
页码:271 / 284
页数:14
相关论文
共 50 条
  • [31] Thermochemical properties of pyrazine derivatives as seminal liquid organic hydrogen carriers for hydrogen storage
    Verevkin, Sergey P.
    Nagrimanov, Ruslan N.
    Zaitsau, Dzmitry H.
    Konnova, Maria E.
    Pimerzin, Aleksey A.
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2021, 158
  • [32] The liquid deposit bottle for our energy hydrogen logistics: liquid organic hydrogen carriers
    Geisselbrecht, Michael
    Auer, Franziska
    Kiermaier, Stephan
    Wasserscheid, Peter
    CHEMIE IN UNSERER ZEIT, 2024, 58 (01) : 52 - 60
  • [33] Electrification of Selective Catalytic Liquid Organic Hydrogen Carriers: Hydrogenation and Dehydrogenation Reactions
    Sedminek, Anja
    Likozar, Blaz
    Gyergyek, Saso
    ACS OMEGA, 2024, 9 (06): : 6027 - 6035
  • [34] Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen -free Hydrogen Economy
    Preuster, Patrick
    Papp, Christian
    Wasserscheid, Peter
    ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (01) : 74 - 85
  • [35] Assessment of system variations for hydrogen transport by liquid organic hydrogen carriers
    Wulf, Christina
    Zapp, Petra
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (26) : 11884 - 11895
  • [36] Recent Advances in Liquid Organic Hydrogen Carriers: An AlcoholBased Hydrogen Economy
    Yadav, Vinita
    Sivakumar, Ganesan
    Gupta, Virendrakumar
    Balaraman, Ekambaram
    ACS CATALYSIS, 2021, 11 (24) : 14712 - 14726
  • [37] Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen
    Niermann, M.
    Timmerberg, S.
    Druenert, S.
    Kaltschmitt, M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 135 (135):
  • [38] Reaction kinetics for catalytic hydrogenation of quinoline to decahydroquinoline as liquid organic hydrogen carrier
    Bagwan, Farahanaz M.
    Kinage, Anil K.
    Vasireddy, Satyam Naidu
    International Journal of Hydrogen Energy, 2024, 92 : 102 - 112
  • [39] Thermodynamic analysis of hydrogen storage: Biphenyl as affordable liquid organic hydrogen carrier (LOHC)
    Konnova, Maria E.
    Vostrikov, Sergey V.
    Pimerzin, Aleksey A.
    Verevkin, Sergey P.
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2021, 159
  • [40] Converting Waste Plastic to Liquid Organic Hydrogen Carriers
    Soltani, Mahdokht
    Rorrer, Julie E.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (51)