Attacks and alignments: rooks, set partitions, and permutations

被引:0
|
作者
Arratia, Richard [1 ]
Desalvo, Stephen [2 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
来源
关键词
STIRLING NUMBERS; ASYMPTOTICS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider uniformly random set partitions of size n with exactly k blocks, and uniformly random permutations of size n with exactly k cycles, under the regime where n - k similar to t root n, t > 0. In this regime, there is a simple approximation for the entire process of component counts; in particular, the number of components of size 3 converges in distribution to Poisson with mean 2/3t(2) for set partitions and mean 4/3t(2) for permutations, and with high probability all other components have size one or two. These approximations are proved, with preasymptotic error bounds, using combinatorial bijections for placements of r rooks on a triangular half of an n x n chess board, together with the Chen-Stein method for processes of indicator random variables.
引用
收藏
页码:25 / 45
页数:21
相关论文
共 50 条
  • [21] SEMILATTICE ON SET OF PERMUTATIONS ON AN INFINITE SET
    ROSENBER.IG
    [J]. MATHEMATISCHE NACHRICHTEN, 1974, 60 (1-6) : 191 - 199
  • [22] PERMUTATIONS OF A SET WITH REPETITIONS
    CHASE, PJ
    [J]. COMMUNICATIONS OF THE ACM, 1970, 13 (06) : 376 - +
  • [23] EXTENSIONS OF SET PARTITIONS
    LINDQUIST, N
    SIERKSMA, G
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1981, 31 (02) : 190 - 198
  • [24] Records in set partitions
    Knopfmacher, Arnold
    Mansour, Toufik
    Wagner, Stephan
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [25] Combinatorics of Set Partitions
    Ozsvart, Loszlo
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2014, 80 (3-4): : 701 - 701
  • [26] Partitions of a circular set
    Lossers, O. P.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (03): : 265 - 266
  • [27] Set partitions with restrictions
    Chu, Wenchang
    Wei, Chuanan
    [J]. DISCRETE MATHEMATICS, 2008, 308 (15) : 3163 - 3168
  • [28] NUMBER OF PARTITIONS OF SET
    ROTA, GC
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (05): : 498 - +
  • [29] COMPLEMENTARY SET PARTITIONS
    MCCULLAGH, P
    WILKS, AR
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1988, 415 (1849) : 347 - 362
  • [30] RANDOM SET PARTITIONS
    GOH, WMY
    SCHMUTZ, E
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (03) : 419 - 436