Non-Markovian modeling of protein folding

被引:60
|
作者
Ayaz, Cihan [1 ]
Tepper, Lucas [1 ]
Brunig, Florian N. [1 ]
Kappler, Julian [2 ]
Daldrop, Jan O. [1 ]
Netz, Roland R. [1 ]
机构
[1] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
基金
欧洲研究理事会;
关键词
protein folding; non-Markovian processes; mean first-passage times; generalized Langevin equation; memory effects; DEPENDENT DIFFUSION; ENERGY LANDSCAPE; FRICTION; TIME;
D O I
10.1073/pnas.2023856118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We extract the folding free energy landscape and the time-dependent friction function, the two ingredients of the generalized Langevin equation (GLE), from explicit-water molecular dynamics (MD) simulations of the alpha-helix forming polypeptide alanine(9) for a one-dimensional reaction coordinate based on the sum of the native H-bond distances. Folding and unfolding times from numerical integration of the GLE agree accurately with MD results, which demonstrate the robustness of our GLE-based non-Markovian model. In contrast, Markovian models do not accurately describe the peptide kinetics and in particular, cannot reproduce the folding and unfolding kinetics simultaneously, even if a spatially dependent friction profile is used. Analysis of the GLE demonstrates that memory effects in the friction significantly speed up peptide folding and unfolding kinetics, as predicted by the Grote-Hynes theory, and are the cause of anomalous diffusion in configuration space. Our methods are applicable to any reaction coordinate and in principle, also to experimental trajectories from single-molecule experiments. Our results demonstrate that a consistent description of protein-folding dynamics must account for memory friction effects.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] NON-MARKOVIAN MACROSCOPIC DYNAMICS
    GROSSMANN, S
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 47 (03): : 251 - 263
  • [42] Non-Markovian dynamics with fermions
    Sargsyan, V. V.
    Adamian, G. G.
    Antonenko, N. V.
    Lacroix, D.
    [J]. PHYSICAL REVIEW A, 2014, 90 (02):
  • [43] Non-Markovian Boltzmann equation
    Kremp, D
    Bonitz, M
    Kraeft, WD
    Schlanges, M
    [J]. ANNALS OF PHYSICS, 1997, 258 (02) : 320 - 359
  • [44] Pure non-Markovian evolutions
    De Santis, Dario
    [J]. QUANTUM, 2023, 7 : 1 - 19
  • [45] NON-MARKOVIAN RESONANCE FLUORESCENCE
    WODKIEWICZ, K
    [J]. PHYSICS LETTERS A, 1979, 73 (02) : 94 - 96
  • [46] Markovian Embeddings of Non-Markovian Quantum Systems: Coupled Stochastic and Quantum Master Equations for Non-Markovian Quantum Systems
    Nurdin, Hendra I.
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 5939 - 5944
  • [47] Control of a qubit under Markovian and non-Markovian noise
    Delben, G. J.
    Beims, M. W.
    da Luz, G. E.
    [J]. PHYSICAL REVIEW A, 2023, 108 (01)
  • [48] Accelerated modeling of steady-state availability of non-Markovian systems
    Kuznetsov, N.Yu.
    [J]. Kibernetika i Sistemnyj Analiz, 2002, (01): : 89 - 98
  • [49] Modeling power forward prices for power with spikes: a non-Markovian approach
    Kholodnyi, VA
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : 958 - 965
  • [50] From Markovian semigroup to non-Markovian quantum evolution
    Chruscinski, D.
    Kossakowski, A.
    [J]. EPL, 2012, 97 (02)