Non-Markovian modeling of protein folding

被引:60
|
作者
Ayaz, Cihan [1 ]
Tepper, Lucas [1 ]
Brunig, Florian N. [1 ]
Kappler, Julian [2 ]
Daldrop, Jan O. [1 ]
Netz, Roland R. [1 ]
机构
[1] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
基金
欧洲研究理事会;
关键词
protein folding; non-Markovian processes; mean first-passage times; generalized Langevin equation; memory effects; DEPENDENT DIFFUSION; ENERGY LANDSCAPE; FRICTION; TIME;
D O I
10.1073/pnas.2023856118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We extract the folding free energy landscape and the time-dependent friction function, the two ingredients of the generalized Langevin equation (GLE), from explicit-water molecular dynamics (MD) simulations of the alpha-helix forming polypeptide alanine(9) for a one-dimensional reaction coordinate based on the sum of the native H-bond distances. Folding and unfolding times from numerical integration of the GLE agree accurately with MD results, which demonstrate the robustness of our GLE-based non-Markovian model. In contrast, Markovian models do not accurately describe the peptide kinetics and in particular, cannot reproduce the folding and unfolding kinetics simultaneously, even if a spatially dependent friction profile is used. Analysis of the GLE demonstrates that memory effects in the friction significantly speed up peptide folding and unfolding kinetics, as predicted by the Grote-Hynes theory, and are the cause of anomalous diffusion in configuration space. Our methods are applicable to any reaction coordinate and in principle, also to experimental trajectories from single-molecule experiments. Our results demonstrate that a consistent description of protein-folding dynamics must account for memory friction effects.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Non-Markovian configurational diffusion and reaction coordinates for protein folding
    Plotkin, SS
    Wolynes, PG
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (22) : 5015 - 5018
  • [2] Markovian and Non-Markovian Modeling of Membrane Dynamics with Milestoning
    Cardenas, Alfredo E.
    Elber, Ron
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (33): : 8208 - 8216
  • [3] Non-Markovian dynamics of reaction coordinate in polymer folding
    Sakaue, T.
    Walter, J. -C.
    Carlon, E.
    Vanderzande, C.
    [J]. SOFT MATTER, 2017, 13 (17) : 3174 - 3181
  • [4] Modeling for Non-Markovian Quantum Systems
    Xue, Shibei
    Nguyen, Thien
    James, Matthew R.
    Shabani, Alireza
    Ugrinovskii, Valery
    Petersen, Ian R.
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (06) : 2564 - 2571
  • [5] Modeling Active Non-Markovian Oscillations
    Tucci, G.
    Roldan, E.
    Gambassi, A.
    Belousov, R.
    Berger, F.
    Alonso, R. G.
    Hudspeth, A. J.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (03)
  • [6] Non-Markovian fluctuations in Markovian models of protein dynamics
    Dua, Arti
    Adhikari, R.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [7] First-passage time distribution and non-Markovian diffusion dynamics of protein folding
    Lee, CL
    Stell, G
    Wang, J
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (02): : 959 - 968
  • [8] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Jing Nie
    Yingshuang Liang
    Biao Wang
    Xiuyi Yang
    [J]. International Journal of Theoretical Physics, 2021, 60 : 2889 - 2900
  • [9] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Nie, Jing
    Liang, Yingshuang
    Wang, Biao
    Yang, Xiuyi
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) : 2889 - 2900
  • [10] Non-Markovian edge-based compartmental modeling
    Shkilev, V. P.
    [J]. PHYSICAL REVIEW E, 2019, 99 (04)