The Gauss-Ostrogradskii formula in infinite-dimensional space

被引:5
|
作者
Pugachev, OV [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow 117234, Russia
关键词
D O I
10.1070/SM1998v189n05ABEH000327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the present paper is to generalize the Gauss-Ostrogradskii theorem to an infinite-dimensional space X. On this space we consider not only Gaussian measures but a wider class of measures, differentiable along some Hilbert space continuously embedded in X. In the paper, a construction of a surface measure which employs ideas of the Malliavin calculus and the theory of Sobolev capacities is considered. It is a generalisation of the surface integration developed by Malliavin for the Wiener measure.
引用
收藏
页码:757 / 770
页数:14
相关论文
共 50 条
  • [32] Stellar Instrument Magnitude Estimation in Infinite-Dimensional Space
    Ma, Yan
    Jiang, Jie
    Zhang, Guangjun
    IEEE SENSORS JOURNAL, 2020, 20 (03) : 1422 - 1432
  • [33] THE APPROXIMATION OF VARIATIONAL-INEQUALITIES IN INFINITE-DIMENSIONAL SPACE
    GASANOV, AI
    DOKLADY AKADEMII NAUK SSSR, 1985, 285 (01): : 20 - 23
  • [34] CLASSICAL MECHANICS IN INFINITE-DIMENSIONAL HILBERT-SPACE
    ZORSKI, H
    SZCZEPANSKI, J
    ARCHIVES OF MECHANICS, 1989, 41 (01): : 115 - 132
  • [35] Jet space extensions of infinite-dimensional Hamiltonian systems
    Preuster, Till
    Maschke, Bernhard
    Schaller, Manuel
    IFAC PAPERSONLINE, 2024, 58 (06): : 298 - 303
  • [36] Geometry of quantum dynamics in infinite-dimensional Hilbert space
    Grabowski, Janusz
    Kus, Marek
    Marmo, Giuseppe
    Shulman, Tatiana
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (16)
  • [37] FUNDAMENTAL SOLUTION OF A DIFFERENTIAL OPERATOR IN AN INFINITE-DIMENSIONAL SPACE
    SJOGREN, MP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (06): : 305 - 307
  • [38] BOSONS IN INFINITE-DIMENSIONAL SPACE AND THE FAILURE OF THE ASSOCIATIVE LAW
    KORETUNE, S
    PROGRESS OF THEORETICAL PHYSICS, 1991, 85 (06): : 1175 - 1176
  • [39] APPROXIMATING SYSTEMS WITH INFINITE-DIMENSIONAL STATE-SPACE
    CHEN, CF
    YATES, RE
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1977, 8 (11) : 1299 - 1311
  • [40] The radon transform in an infinite-dimensional space with Gaussian measure
    Lukintsova, M. N.
    DOKLADY MATHEMATICS, 2013, 88 (03) : 674 - 677