Ground state solutions for periodic Discrete nonlinear Schrodinger equations

被引:1
|
作者
Xu, Xionghui [1 ]
Sun, Jijiang [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 12期
关键词
discrete nonlinear Schrodinger equation; ground state; superlinear; asymptotically linear; periodic potential; GAP SOLITONS; BREATHERS; EXISTENCE; LATTICES;
D O I
10.3934/math.2021755
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following periodic discrete nonlinear Schrodinger equation Lu-n - omega u(n) = g(n)(u(n)), n = (n(1), n(2), ..., n(m)) E Z(m), where omega is not an element of sigma(L)(the spectrum of L) and g(n)(s) is super or asymptotically linear as vertical bar s vertical bar -> infinity. Under weaker conditions on g(n), the existence of ground state solitons is proved via the generalized linking theorem developed by Li and Szulkin and concentration-compactness principle. Our result sharply extends and improves some existing ones in the literature.
引用
收藏
页码:13057 / 13071
页数:15
相关论文
共 50 条