Energy-efficient Incremental Offloading of Neural Network Computations in Mobile Edge Computing

被引:2
|
作者
Guo, Guangfeng [1 ,2 ]
Zhang, Junxing [1 ]
机构
[1] Inner Mongolia Univ, Coll Comp Sci, Hohhot, Peoples R China
[2] Inner Mongolia Univ Sci & Technol, Baotou Teachers Coll, Baotou, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile Edge Computing; Deep Neural Network; Computation Offloading; Energy Efficient;
D O I
10.1109/GLOBECOM42002.2020.9322504
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Neural Network (DNN) has shown remarkable success in Computer Vision and Augmented Reality. However, battery-powered devices still cannot afford to run state-of-the-art DNNs. Mobile Edge Computing (MEC) is a promising approach to run the DNNs on energy-constrained mobile devices. It uploads the DNN model partitions of the devices to the nearest edge servers on demand, and then offloads DNN computations to the servers to save the energy of the devices. Nevertheless, the existing all-at-once computation offloading faces two great challenges. The first one is how to find the most energy-efficient model partition scheme under different wireless network bandwidths in MEC. The second challenge is how to reduce the time and energy cost of the devices waiting for the servers, since uploading all DNN layers of the optimal partition often lakes time. To meet these challenges, we propose the following solution. First, we build regression-based energy consumption prediction models by profiling the energy consumption of mobile devices under varied wireless network bandwidths. Then, we present an algorithm that finds the most energy-efficient DNN partition scheme based on the established prediction models and performs incremental computation offloading upon the completion of uploading each DNN partition. The experimental results show that our solution improves energy efficiency compared to the current all-at-once approach. Under the 100 Mbps bandwidth, when the model uploading takes 1/3 of the total uploading time, the proposed solution can reduce the energy consumption by around 40%.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Energy-Efficient Task Offloading and Resource Scheduling for Mobile Edge Computing
    Yu, Hongyan
    Wang, Quyuan
    Guo, Songtao
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, ARCHITECTURE AND STORAGE (NAS), 2018,
  • [12] Energy-Efficient Multimedia Task Assignment and Computing Offloading for Mobile Edge Computing Networks
    Sun, Yang
    Wei, Tingting
    Li, Huixin
    Zhang, Yanhua
    Wu, Wenjun
    [J]. IEEE ACCESS, 2020, 8 (08): : 36702 - 36713
  • [13] Energy-Efficient Task Caching and Offloading Strategy in Mobile Edge Computing Systems
    Chen, Qian
    Liu, Zhoubin
    Ruan, Linna
    Wang, Zixiang
    Shao, Sujie
    Qi, Feng
    [J]. SECURITY WITH INTELLIGENT COMPUTING AND BIG-DATA SERVICES, 2020, 895 : 824 - 837
  • [14] Energy-efficient Offloading Policy for Resource Allocation in Distributed Mobile Edge Computing
    Wang, Chang
    Dong, Chongwu
    Qin, Jinghui
    Yang, Xiaoxing
    Wen, Wushao
    [J]. 2018 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2018, : 371 - 377
  • [15] Energy-Efficient Heuristic Computation Offloading With Delay Constraints in Mobile Edge Computing
    Mei, Jing
    Tong, Zhao
    Li, Kenli
    Zhang, Lianming
    Li, Keqin
    [J]. IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (06) : 4404 - 4417
  • [16] Energy-Efficient Computation Offloading in Collaborative Edge Computing
    Lin, Rongping
    Xie, Tianze
    Luo, Shan
    Zhang, Xiaoning
    Xiao, Yong
    Moran, Bill
    Zukerman, Moshe
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21) : 21305 - 21322
  • [17] Energy-efficient and network-aware offloading algorithm for mobile cloud computing
    Magurawalage, Chathura M. Sarathchandra
    Yang, Kun
    Hu, Liang
    Zhang, Jianming
    [J]. COMPUTER NETWORKS, 2014, 74 : 22 - 33
  • [18] Energy Efficient Computation Offloading in Mobile Edge Computing
    Rong, Bo
    Chen, Ying
    Zhang, Ning
    Wu, Yuan
    Shen, Sherman
    [J]. IEEE WIRELESS COMMUNICATIONS, 2023, 30 (02) : 8 - 8
  • [19] Energy-Efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks
    Zhang, Ke
    Mao, Yuming
    Leng, Supeng
    Zhao, Quanxin
    Li, Longjiang
    Peng, Xin
    Pan, Li
    Maharjan, Sabita
    Zhang, Yan
    [J]. IEEE ACCESS, 2016, 4 : 5896 - 5907
  • [20] Energy-efficient offloading decision-making for mobile edge computing in vehicular networks
    Huang, Xiaoge
    Xu, Ke
    Lai, Chenbin
    Chen, Qianbin
    Zhang, Jie
    [J]. EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2020, 2020 (01)