A note on neighborhood total domination in graphs

被引:0
|
作者
Rad, Nader Jafari [1 ]
机构
[1] Shahrood Univ Technol, Dept Math, Shahrood, Iran
关键词
Neighborhood total domination; total domination;
D O I
10.1007/s12044-015-0241-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G=(V,E) be a graph without isolated vertices. A dominating set S of G is called a neighborhood total dominating set (or just NTDS) if the induced subgraph G[N(S)] has no isolated vertex. The minimum cardinality of a NTDS of G is called the neighborhood total domination number of G and is denoted by gamma (nt)(G). In this paper, we obtain sharp bounds for the neighborhood total domination number of a tree. We also prove that the neighborhood total domination number is equal to the domination number in several classes of graphs including grid graphs.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 50 条
  • [41] Total Domination Versus Domination in Cubic Graphs
    Cyman, Joanna
    Dettlaff, Magda
    Henning, Michael A.
    Lemanska, Magdalena
    Raczek, Joanna
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (01) : 261 - 276
  • [42] Note on domination and minus domination numbers in cubic graphs
    Chen, YJ
    Cheng, TCE
    Ng, CT
    Shan, EF
    [J]. APPLIED MATHEMATICS LETTERS, 2005, 18 (09) : 1062 - 1067
  • [43] A note on domination and independence-domination numbers of graphs
    Milanic, Martin
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2013, 6 (01) : 89 - 97
  • [44] NEIGHBOURHOOD TOTAL DOMINATION IN GRAPHS
    Arumugam, S.
    Sivagnanam, C.
    [J]. OPUSCULA MATHEMATICA, 2011, 31 (04) : 519 - 531
  • [45] Girth and Total Domination in Graphs
    Michael A. Henning
    Anders Yeo
    [J]. Graphs and Combinatorics, 2012, 28 : 199 - 214
  • [46] Signed Total Domination in Graphs
    邢化明
    孙良
    陈学刚
    [J]. Journal of Beijing Institute of Technology, 2003, (03) : 319 - 321
  • [47] DOMINATION INTEGRITY OF TOTAL GRAPHS
    Vaidya, S. K.
    Shah, N. H.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (01): : 117 - 126
  • [48] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [49] Chromatic total domination in graphs
    Balamurugan, S.
    Anitha, M.
    Eswari, M. Angala
    Kalaiselvi, S.
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (05): : 745 - 751
  • [50] Total Domination Value in Graphs
    Kang, Cong X.
    [J]. UTILITAS MATHEMATICA, 2014, 95 : 263 - 279