COMPLETENESS PROPERTIES OF SOBOLEV METRICS ON THE SPACE OF CURVES

被引:13
|
作者
Bruveris, Martins [1 ]
机构
[1] Brunel Unvers London, Dept Math, Uxbridge UB8 3PH, Middx, England
来源
JOURNAL OF GEOMETRIC MECHANICS | 2015年 / 7卷 / 02期
关键词
Immersed curves; Sobolev metrics; completeness; minimizing geodesics; shape space; SHAPE SPACE; RIEMANNIAN METRICS; GEOMETRIES;
D O I
10.3934/jgm.2015.7.125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study completeness properties of Sobolev metrics on the space of immersed curves and on the shape space of unparametrized curves. We show that Sobolev metrics of order n >= 2 are metrically complete on the space I-n (S-1, R-d) of Sobolev immersions of the same regularity and that any two curves in the same connected component can be joined by a minimizing geodesic. These results then imply that the shape space of unparametrized curves has the structure of a complete length space.
引用
收藏
页码:125 / 150
页数:26
相关论文
共 50 条