Penalized PET reconstruction using CNN prior

被引:0
|
作者
Kim, Kyungsang [1 ,2 ]
Wu, Dufan [1 ,2 ]
Gong, Kuang [1 ,2 ]
Kim, Jong Hoon [3 ,4 ]
Son, Young Don [3 ]
Kim, Hang Keun [3 ]
El Fakhri, Georges [1 ,2 ]
Li, Quanzheng [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Gordon Ctr Med Imaging, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Gachon Univ, Neurosci Res Inst, Incheon, South Korea
[4] Gachon Univ, Gil Med Ctr, Dept Psychiat, Incheon, South Korea
来源
2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC) | 2017年
关键词
IMAGE-RECONSTRUCTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Inspired by great performance of convolutional neural network (CNN), we propose an iterative positron emission tomography (PET) reconstruction using a CNN prior. We used the denoising CNN (DnCNN) method and trained the network using regular dose images as groundtruth and low dose images as input. Poisson thinning method is used for generating the low dose data by downsampling counts. Due to the DnCNN is trained at a certain noise level, the noise level change in each iteration is one of major problems. To address this issue, we propose a local linear fitting (LLF) function incorporated with DnCNN to improve the image quality by preventing unwanted bias. By using LLF function, we demonstrate that the proposed method is robust to noise level changes in iterations. In bias and variance studies in simulations, the proposed method outperforms the conventional iterative methods. We confirm that the proposed method improves the reconstructed image both quantitatively and qualitatively.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] TOWARDS PATIENT SPECIFIC RECONSTRUCTION USING PERCEPTION-AWARE CNN AND PLANNING CT AS PRIOR
    Ghosh, Suhita
    Ernst, Philipp
    Rose, Georg
    Nuernberger, Andreas
    Stober, Sebastian
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [32] Deep CNN Prior Based Image Reconstruction for Multispectral Imaging
    Manisali, Irfan
    Cam, Refik Mert
    Bezek, Can Deniz
    Oktem, Figen S.
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [33] Suppression of edge artifacts using a Bayesian penalized-likelihood reconstruction algorithm for oncological PET/CT imaging
    Yamaguchi, Shotaro
    Wagatsuma, Kei
    Miwa, Kenta
    Ishii, Kenji
    Inoue, Kazumasa
    Fukushi, Masahiro
    JOURNAL OF NUCLEAR MEDICINE, 2017, 58
  • [34] Penalized-Likelihood PET Image Reconstruction Using 3D Structural Convolutional Sparse Coding
    Xie, Nuobei
    Gong, Kuang
    Guo, Ning
    Qin, Zhixing
    Wu, Zhifang
    Liu, Huafeng
    Li, Quanzheng
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (01) : 4 - 14
  • [35] Clinical evaluation of penalized likelihood reconstruction in whole-body PET studies
    Ma, H.
    Asma, E.
    Ahn, S.
    Ross, S.
    Manjeshwar, R.
    Wilson, D.
    Tonseth, R. P.
    Tran, A.
    Celler, A.
    Benard, F.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2013, 40 : S109 - S109
  • [36] A Novel Penalized Joint Image Reconstruction Method for Tau-PET Imaging
    Ihsani, Alvin
    Dutta, Joyita
    Becker, J. Alex
    Johnson, Keith Alan
    Ouyang, Jinsong
    El Fakhri, Georges
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [37] Evaluation of Penalized Maximum-Likelihood PET Image Reconstruction for ROI Quantification
    Yang, Li
    Zhou, Jian
    Asma, Evren
    Wang, Wenli
    2016 IEEE NUCLEAR SCIENCE SYMPOSIUM, MEDICAL IMAGING CONFERENCE AND ROOM-TEMPERATURE SEMICONDUCTOR DETECTOR WORKSHOP (NSS/MIC/RTSD), 2016,
  • [38] dPIRPLE: a joint estimation framework for deformable registration and penalized-likelihood CT image reconstruction using prior images
    Dang, H.
    Wang, A. S.
    Sussman, Marc S.
    Siewerdsen, J. H.
    Stayman, J. W.
    PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (17): : 4799 - 4826
  • [39] Uncertainty-Informed Bayesian PET Image Reconstruction Using a Deep Image Prior
    Sudarshan, Viswanath P.
    Reddy, K. Pavan Kumar
    Singh, Mohana
    Gubbi, Jayavardhana
    Pal, Arpan
    MACHINE LEARNING FOR MEDICAL IMAGE RECONSTRUCTION (MLMIR 2022), 2022, 13587 : 145 - 155
  • [40] PET image reconstruction using weighted nuclear norm maximization and deep learning prior
    Kuang, Xiaodong
    Li, Bingxuan
    Lyu, Tianling
    Xue, Yitian
    Huang, Hailiang
    Xie, Qingguo
    Zhu, Wentao
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (21):