SOME IDENTITIES INVOLVING MULTIPLICATIVE (GENERALIZED) (α,1)-DERIVATIONS IN SEMIPRIME RINGS

被引:0
|
作者
Malleswari, G. Naga [1 ]
Sreenivasulu, S. [2 ]
Shobhalatha, G. [1 ]
机构
[1] Sri Krishnadevaraya Univ, Dept Math, Anantapur 515003, Andhra Pradesh, India
[2] Govt Coll Autonomous, Dept Math, Anantapur 515001, Andhra Pradesh, India
关键词
Semiprime rings; Multiplicative (generalized) (alpha; 1)-derivations; Ideal; DERIVATIONS; PRIME; COMMUTATIVITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a semiprime ring, I a nonzero ideal of R and ff be an automorphism of R. A map F : R -> R is said to be a multiplicative (generalized) (alpha, 1)-derivation associated with a map d : R -> R such that F(xy) = F(x)alpha(y) + xd(y), for all x, y 2 is an element of R. In the present paper, we shall prove that R contains a nonzero central ideal if any one of the following holds: (i) F [x;, y] +/- alpha [x, y] = 0; (ii) F (x circle y) +/- alpha (x circle y) = 0; (iii) F [x, y] = [F(x), y](alpha, 1); (iv) F [x; y] = (F(x) circle y)(alpha,1), (v) F (x circle y) = [F(x), y](alpha,1) and (vi) F (x circle y) = (F(x) circle y)(alpha,1), for all x, y is an element of I.
引用
收藏
页码:44 / 51
页数:8
相关论文
共 50 条
  • [31] Orthogonal generalized (σ, τ)-derivations of semiprime rings
    Golbasi, O.
    Aydin, N.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (06) : 979 - 983
  • [32] Centralizing identities involving generalized derivations in prime rings
    De Filippis, Vincenzo
    Gupta, Pallavee
    Tiwari, Shailesh Kumar
    Prajapati, Balchand
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (04) : 587 - 605
  • [33] GENERALIZED JORDAN DERIVATIONS ON SEMIPRIME RINGS
    Ferreira, Bruno L. M.
    Ferreira, Ruth N.
    Guzzo, Henrique, Jr.
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 109 (01) : 36 - 43
  • [34] Generalized skew derivations on semiprime rings
    De Filippis, Vincenzo
    Di Vincenzo, Onofrio Mario
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (05): : 927 - 939
  • [35] Generalized reverse derivations on semiprime rings
    A. Aboubakr
    S. González
    [J]. Siberian Mathematical Journal, 2015, 56 : 199 - 205
  • [36] ON GENERALIZED DERIVATIONS OF PRIME AND SEMIPRIME RINGS
    Huang, Shuliang
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02): : 771 - 776
  • [37] A note on generalized derivations of semiprime rings
    Vukman, Joso
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (02): : 367 - 370
  • [38] Generalized derivations in prime and semiprime rings
    Huang, Shuliang
    Rehman, Nadeem ur
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2016, 34 (02): : 29 - 34
  • [39] Remarks on Certain Identities with Derivations on Semiprime Rings
    Fosner, A.
    Baydar, N.
    Strasek, R.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2015, 66 (10) : 1609 - 1614
  • [40] Generalized reverse derivations on semiprime rings
    Aboubakr, A.
    Gonzalez, S.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (02) : 199 - 205