Studies on the sparsifying operator in compressive digital holography

被引:14
|
作者
Bettens, Stijn [1 ,2 ]
Yan, Hao [1 ,3 ]
Blinder, David [1 ,2 ]
Ottevaere, Heidi [4 ]
Schretter, Colas [1 ,2 ]
Schelkens, Peter [1 ,2 ]
机构
[1] Vrije Univ Brussel VUB, Dept Elect & Informat ETRO, Pl Laan 2, B-1050 Brussels, Belgium
[2] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[3] Shanghai Jiao Tong Univ, Sch EIEE, Dept Instrument Sci & Engn, Shanghai 200240, Peoples R China
[4] Vrije Univ Brussel VUB, Dept Appl Phys & Photon TONA, Brussels Photon Team B PHOT, Pl Laan 2, B-1050 Brussels, Belgium
来源
OPTICS EXPRESS | 2017年 / 25卷 / 16期
基金
比利时弗兰德研究基金会; 欧洲研究理事会; 中国国家自然科学基金;
关键词
RESOLUTION; SPARSITY; RECONSTRUCTION;
D O I
10.1364/OE.25.018656
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In compressive digital holography, we reconstruct sparse object wavefields from undersampled holograms by solving an l(1)-minimization problem. Applying wavelet transformations to the object wavefields produces the necessary sparse representations, but prior work clings to transformations with too few vanishing moments. We put several wavelet transformations belonging to different wavelet families to the test by evaluating their sparsifying properties, the number of hologram samples that are required to reconstruct the sparse wavefields perfectly, and the robustness of the reconstructions to additive noise and sparsity defects. In particular, we recommend the CDF 9/7 and 17/11 wavelet transformations, as well as their reverse counterparts, because they yield sufficiently sparse representations for most accustomed wavefields in combination with robust reconstructions. These and other recommendations are procured from simulations and are validated using biased, noisy holograms. (C) 2017 Optical Society of America
引用
收藏
页码:18656 / 18676
页数:21
相关论文
共 50 条
  • [21] Underwater digital holography for studies of marine plankton
    Sun, H.
    Benzie, P. W.
    Burns, N.
    Hendry, D. C.
    Player, M. A.
    Watson, J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1871): : 1789 - 1806
  • [22] Collaborative Compressive Spectrum Sensing Using Kronecker Sparsifying Basis
    Elzanati, Ahmed M.
    Abdelkader, Mohamed F.
    Seddik, Karim G.
    Ghuniem, Atef M.
    2013 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2013, : 2902 - 2907
  • [23] Performance comparison of sparsifying basis functions for compressive speech enhancement
    Sahu, Smriti
    Rayavarapu, Neela
    INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2019, 22 (03) : 769 - 783
  • [24] Compressive phase object classification using single-pixel digital holography
    Endo, Yutaka
    Nakajima, Gai
    OPTICS EXPRESS, 2022, 30 (15) : 28057 - 28066
  • [26] Compressive Sensing with Optimal Sparsifying Basis and Applications in Spectrum Sensing
    Gwon, Youngjune
    Kung, H. T.
    Vlah, Dario
    2012 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2012, : 5386 - 5391
  • [27] Performance comparison of sparsifying basis functions for compressive speech enhancement
    Smriti Sahu
    Neela Rayavarapu
    International Journal of Speech Technology, 2019, 22 : 769 - 783
  • [28] Signal Recovery in Compressive Sensing via Multiple Sparsifying Bases
    Wijewardhana, U. L.
    Belyaev, E.
    Codreanu, M.
    Latva-aho, M.
    2017 DATA COMPRESSION CONFERENCE (DCC), 2017, : 141 - 150
  • [29] The torus operator in holography
    Marolf, Donald
    Wien, Jason
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01):
  • [30] The torus operator in holography
    Donald Marolf
    Jason Wien
    Journal of High Energy Physics, 2018