SPARK Job Performance Analysis and Prediction Tool(DEMO)

被引:0
|
作者
Singhal, Rekha [1 ]
Phalak, Chetan [1 ]
Kumar, Praveen [1 ]
机构
[1] TCS Res, Chennai, Tamil Nadu, India
关键词
Spark; Performance; Prediction;
D O I
10.1145/3185768.3185772
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Spark is one of most widely deployed in-memory big data technology for parallel data processing across cluster of machines. The availability of these big data platforms on commodity machines has raised the challenge of assuring performance of applications with increase in data size. We have build a tool to assist application developer and tester to estimate an application execution time for larger data size before deployment. Conversely, the tool may also be used to estimate the competent cluster size for desired application performance in production environment. The tool can be used for detailed profiling of Spark job, post execution, to understand performance bottleneck. This tool incorporates different configurations of Spark cluster to estimate application performance. Therefore, it can also be used with optimization techniques to get tuned value of Spark parameters for an optimal performance. The tool's key innovations are support for different configurations of Spark platform for performance prediction and simulator to estimate Spark stage execution time which includes task execution variability due to HDFS, data skew and cluster nodes heterogeneity. The tool using model [3] has been shown to predict within 20% error bound for Wordcount, Terasort,Kmeans and few SQL workloads.
引用
收藏
页码:49 / 50
页数:2
相关论文
共 50 条
  • [1] Automated Analysis and Prediction of Job Interview Performance
    Naim, Iftekhar
    Tanveer, Md. Iftekhar
    Gildea, Daniel
    Hoque, Mohammed Ehsan
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2018, 9 (02) : 191 - 204
  • [2] Performance of the ASML EUV Alpha Demo Tool
    Hermans, Jan V.
    Hendrickx, Eric
    Laidler, David
    Jehoul, Christiane
    Van Den Heuvel, Dieter
    Goethals, Anne-Marie
    [J]. EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY, 2010, 7636
  • [3] Performance Prediction of Spark Based on the Multiple Linear Regression Analysis
    Dong, Lu
    Li, Peng
    Xu, He
    Luo, Baozhou
    Mi, Yu
    [J]. PARALLEL ARCHITECTURE, ALGORITHM AND PROGRAMMING, PAAP 2017, 2017, 729 : 70 - 81
  • [4] First performance results of the ASML alpha demo tool
    Meiling, Hans
    Meijer, Henk
    Banine, Vadim
    Moors, Roel
    Groeneveld, Rogier
    Vorma, Hann-Jan
    Mickan, Uwe
    Wolschrijn, Bas
    Mertens, Bas
    van Baars, Gregor
    Kuerz, Peter
    Harned, Noreen
    [J]. OPTICAL MICROLITHOGRAPHY XIX, PTS 1-3, 2006, 6154 : XLV - LVI
  • [5] Demo Abstract: An Integrated Tool of Applying Stochastic Network Calculus for Network Performance Analysis
    Beck, Michael A.
    Henningsen, Sebastian
    Xu, Qian
    Wang, Jianping
    Wu, Kui
    Liu, Xian
    [J]. 2017 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2017, : 964 - 965
  • [6] First performance results of the ASML alpha demo tool
    Meiling, Hans
    Meijer, Henk
    Banine, Vadim
    Moors, Roel
    Groeneveld, Rogier
    Voorma, Harm-Jan
    Mickan, Uwe
    Wolschrijn, Bas
    Mertens, Bas
    van Baars, Gregor
    Kuerz, Peter
    Harned, Noreen
    [J]. EMERGING LITHOGRAPHIC TECHNOLOGIES X, PTS 1 AND 2, 2006, 6151
  • [7] Imaging performance of the EUV alpha demo tool at IMEC
    Lorusso, G. F.
    Hermans, J.
    Goethals, A. M.
    Baudemprez, B.
    Van Roey, F.
    Myers, A. M.
    Kim, I.
    Kim, B. S.
    Jonckheere, R.
    Niroomand, A.
    Lok, S.
    Van Dijk, A.
    de Marneffe, J. -F.
    Demuynck, S.
    Goossens, D.
    Ronse, K.
    [J]. EMERGING LITHOGRAPHIC TECHNOLOGIES XII, PTS 1 AND 2, 2008, 6921
  • [8] THE PREDICTION OF JOB-PERFORMANCE
    KIPNIS, D
    GLICKMAN, AS
    [J]. JOURNAL OF APPLIED PSYCHOLOGY, 1962, 46 (01) : 50 - 56
  • [9] Performance Prediction for Apache Spark Platform
    Wang, Kewen
    Khan, Mohammad Maifi Hasan
    [J]. 2015 IEEE 17TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, 2015 IEEE 7TH INTERNATIONAL SYMPOSIUM ON CYBERSPACE SAFETY AND SECURITY, AND 2015 IEEE 12TH INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (ICESS), 2015, : 166 - 173
  • [10] Efficient Performance Prediction for Apache Spark
    Cheng, Guoli
    Ying, Shi
    Wang, Bingming
    Li, Yuhang
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2021, 149 : 40 - 51