Evaluation of a sealed layer on a porous thermal barrier coating against molten calcium-magnesium-alumina-silicate corrosion

被引:12
|
作者
Cui, Shiyu [1 ]
Huang, Jun [1 ]
Luo, Junming [1 ]
Liang, Wenping [2 ]
Saucedo-Mora, Luis [3 ,4 ]
Tao, Xiaoma [5 ]
机构
[1] Nanchang Hangkong Univ, Sch Mat Sci & Engn, Nanchang 330063, Jiangxi, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 210000, Peoples R China
[3] Univ Politecn Madrid, Sch Aeronaut & Space Engn, Madrid 28040, Spain
[4] Univ Oxford, Parks Rd, Oxford OX1 3PH, England
[5] Guangxi Univ, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
关键词
Ca-Mg-Al-silicate corrosion; Sealed layers; Magnetron sputtering; Crystallization; BEHAVIOR; CERAMICS; FAILURE; GROWTH;
D O I
10.1016/j.matdes.2021.109918
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal barrier coatings (TBCs) can improve the high-temperature performance of turbine blades, however, the complex service environment such as Ca-Mg-Al-silicate (CMAS) is the main reason for the coating failure. The corrosive medium (Ca2+ and Si4+) penetrates the TBCs through the porous structure combined with surface defects. In this study, three different sealed layers (Zr, Al, and Al-Y) were deposited on the traditional TBCs by using magnetron sputtering. The cross-sectional morphologies showed the continuous structure of the sealed layer improved the pore filling effect. When O-2 is adsorbed at the top position of the Al atom, the lowest adsorption energy of the YAl3 (0001) surface is -5.34 eV which can provide stronger chemical adsorption energies for Al and O. The Al-Y sealed layer was preferred to form an aluminum oxide film. The experimental results of CMAS corrosion showed that Al-Y sealed layer can achieve long-lasting protection because the aluminum yttrium oxide (Al2Y4O9) reacts with CaO and SiO2 at the interface and finally formed Ca3Y2(SiO4)(6)O-2, resulting in rapid crystallization of CMAS. (C) 2021 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Resistance of ytterbium silicate environmental barrier coatings against molten calcium-magnesium-aluminosilicate (CMAS): A comprehensive study
    Zhou, Bangyang
    Wu, Yang
    Ke, Xijia
    Zhou, Qijie
    Cui, Yongjing
    Wang, Changliang
    Guo, Mengqiu
    Jiao, Jian
    SURFACE & COATINGS TECHNOLOGY, 2024, 479
  • [32] Improvement on corrosion resistance of molten calcium-magnesium-alumina-silicate (CMAS) by Yb2O3-Y2O3 co-stabilized ZrO2 ceramic pellets
    Liu, Yangguang
    Liu, Wei
    Wang, Weize
    Zhang, Wenkang
    Yang, Ting
    Li, Kaibin
    Tang, Zhongxiang
    Liu, Chen
    Zhang, Chengcheng
    CORROSION SCIENCE, 2024, 227
  • [33] Transient thermal stress due to the penetration of calcium-magnesium-alumino-silicate in EB-PVD thermal barrier coating system
    Zhang, Guanghui
    Fan, Xueling
    Xu, Rong
    Su, Luochuan
    Wang, T. J.
    CERAMICS INTERNATIONAL, 2018, 44 (11) : 12655 - 12663
  • [34] Doped effect of Yb on enhancing resistance to calcium-magnesium-alumina-silicate corrosion of Sm2(Zr0.7Ce0.3)2O7
    Dong, Meijing
    Liang, Wenping
    Miao, Qiang
    Zhao, Hui
    Liu, Ruixiang
    Yan, Rongxue
    Zang, Kai
    Yao, Wei
    Gao, Xiguang
    Song, Yindong
    CORROSION SCIENCE, 2023, 224
  • [35] High-temperature corrosion mechanism of a promising scandium tantalate ceramic for next generation thermal barrier coating under molten calcium-magnesium-aluminosilicate (CMAS)
    Ye, Fuxing
    Yuan, Yihui
    Yan, Shuai
    Guo, Lei
    Yu, Jianxing
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 256
  • [36] Combined effect of thermally grown oxide growth and calcium-magnesium-alumino-silicate infiltration in thermal barrier coating system
    Chiu, C. C.
    Tseng, S. C.
    Chao, C. K.
    Li, M. D.
    CERAMICS INTERNATIONAL, 2022, 48 (24) : 37075 - 37084
  • [37] In situ synthesis of α-alumina layer on thermal barrier coating for protection against CMAS (CaO-MgO-Al2O3-SiO2) corrosion
    Zhang, Xiao-feng
    Zhou, Ke-song
    Xu, Wei
    Chen, Bo-yu
    Song, Jin-bing
    Liu, Min
    SURFACE & COATINGS TECHNOLOGY, 2015, 261 : 54 - 59
  • [38] Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating
    Zhang, X. F.
    Zhou, K. S.
    Liu, M.
    Deng, C. M.
    Deng, C. G.
    Deng, Z. Q.
    CERAMICS INTERNATIONAL, 2016, 42 (16) : 19349 - 19356
  • [39] Calcium-Magnesium-Aluminum-Silicate (CMAS) Corrosion Resistance of Y-Yb-Gd-Stabilized Zirconia Thermal Barrier Coatings
    Wang, Tongxin
    Shao, Fang
    Ni, Jinxing
    Zhao, Huayu
    Zhuang, Yin
    Sheng, Jing
    Zhong, Xinghua
    Yang, Jiasheng
    Tao, Shunyan
    Yang, Kai
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2021, 30 (1-2) : 442 - 456
  • [40] Calcium-Magnesium-Aluminum-Silicate (CMAS) Corrosion Resistance of Y-Yb-Gd-Stabilized Zirconia Thermal Barrier Coatings
    Tongxin Wang
    Fang Shao
    Jinxing Ni
    Huayu Zhao
    Yin Zhuang
    Jing Sheng
    Xinghua Zhong
    Jiasheng Yang
    Shunyan Tao
    Kai Yang
    Journal of Thermal Spray Technology, 2021, 30 : 442 - 456