Building damage detection based on multi-source adversarial domain adaptation

被引:3
|
作者
Wang, Xiang [1 ]
Li, Yundong [1 ]
Lin, Chen [1 ]
Liu, Yi [1 ]
Geng, Shuo [1 ]
机构
[1] North China Univ Technol Informat Sci & Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing imagery; building damage detection; domain adaptation; multi-source domain; adapted source domain; transfer learning;
D O I
10.1117/1.JRS.15.036503
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Building damage assessment plays an essential role during post-disaster rescue operations. Given that labeled samples are difficult to timely obtain after a disaster, transfer learning attracts increasing attention. However, different sensors employed cause considerable discrepancies not only between historical and current scenes but also among historical scenes, which could exert an effect on transfer performance. Therefore, a multi-source adversarial domain adaptation (MADA) method is proposed in this paper to fulfill the task of post-disaster building assessment. This method consists of two phases. First, imageries of several historical scenes are transformed into the same style of the current scene through the CycleGAN model with a classifier, ensuring class invariance, to be fused to make an adapted source domain. Second, feature alignment between adapted source and target domains is executed based on adversarial discriminative domain adaptation. The MADA method enhances the transformed image quality, fully utilizes relevant information in historical scenes, solves inter-scene interference problems among historical images, and improves the transfer efficiency from historical to the current disaster scene. Two experiments are conducted with Hurricane Sandy, Irma, and Maria datasets as multi-source and target domains to validate MADA's effectiveness. Results show that the classification performance is better than other methods. (c) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:16
相关论文
共 50 条
  • [21] BAYESIAN MULTI-SOURCE DOMAIN ADAPTATION
    Sun, Shi-Liang
    Shi, Hong-Lei
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 24 - 28
  • [22] Multi-Source Survival Domain Adaptation
    Shaker, Ammar
    Lawrence, Carolin
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 9752 - 9762
  • [23] A multi-source transfer learning model based on LSTM and domain adaptation for building energy prediction
    Lu, Huiming
    Wu, Jiazheng
    Ruan, Yingjun
    Qian, Fanyue
    Meng, Hua
    Gao, Yuan
    Xu, Tingting
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 149
  • [24] CALDA: Improving Multi-Source Time Series Domain Adaptation With Contrastive Adversarial Learning
    Wilson, Garrett
    Doppa, Janardhan Rao
    Cook, Diane J.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 14208 - 14221
  • [25] A weighted multi-source domain adaptation approach for surface defect detection
    Hu, Bing
    Wang, Jianhui
    IET IMAGE PROCESSING, 2022, 16 (08) : 2210 - 2218
  • [26] Multi-source multi-modal domain adaptation
    Zhao, Sicheng
    Jiang, Jing
    Tang, Wenbo
    Zhu, Jiankun
    Chen, Hui
    Xu, Pengfei
    Schuller, Bjorn W.
    Tao, Jianhua
    Yao, Hongxun
    Ding, Guiguang
    INFORMATION FUSION, 2025, 117
  • [27] Wasserstein Barycenter for Multi-Source Domain Adaptation
    Montesuma, Eduardo Fernandes
    Mboula, Fred Maurice Ngole
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16780 - 16788
  • [28] Unsupervised Multi-source Domain Adaptation for Regression
    Richard, Guillaume
    de Mathelin, Antoine
    Hebrail, Georges
    Mougeot, Mathilde
    Vayatis, Nicolas
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT I, 2021, 12457 : 395 - 411
  • [29] On the analysis of adaptability in multi-source domain adaptation
    Redko, Ievgen
    Habrard, Amaury
    Sebban, Marc
    MACHINE LEARNING, 2019, 108 (8-9) : 1635 - 1652
  • [30] Multi-source Domain Adaptation for Semantic Segmentation
    Zhao, Sicheng
    Li, Bo
    Yue, Xiangyu
    Gu, Yang
    Xu, Pengfei
    Hu, Runbo
    Chai, Hua
    Keutzer, Kurt
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32