On the spectral radius of simple digraphs with prescribed number of arcs

被引:5
|
作者
Jin, Ya-Lei
Zhang, Xiao-Dong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Simple digraph; Spectral radius; Arc; NONNEGATIVE MATRICES;
D O I
10.1016/j.disc.2015.03.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a sharp upper bound for the spectral radius of simple digraphs with described number of arcs. Further, the extremal graphs which attain the maximum spectral radius among all simple digraphs with fixed arcs are investigated. In particular, we characterize all extremal simple digraphs with the maximum spectral radius among all simple digraphs with arcs number e = 2 ((k)(2)) + t and k> 4t(4) + 4. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1555 / 1564
页数:10
相关论文
共 50 条
  • [31] The Aα spectral radius and maximum outdegree of irregular digraphs
    Xi, Weige
    Wang, Ligong
    DISCRETE OPTIMIZATION, 2020, 38 (38)
  • [32] SOME CYCLIC PROPERTIES IN BIPARTITE DIGRAPHS WITH A GIVEN NUMBER OF ARCS
    MANOUSSAKIS, M
    MANOUSSAKIS, Y
    ARS COMBINATORIA, 1991, 32 : 301 - 310
  • [33] Sharp bounds for the signless Laplacian spectral radius of digraphs
    Lang, Weiwei
    Wang, Ligong
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 43 - 49
  • [34] Spectral Radius of Non-negative Matrices and Digraphs
    ZHANG Xiao Dong Department of Mathematics.East China Normal University
    ActaMathematicaSinica(EnglishSeries), 2002, 18 (02) : 293 - 300
  • [35] Spectral Radius of Non-negative Matrices and Digraphs
    Xiao Dong Zhang
    Jiong Sheng Li
    Acta Mathematica Sinica, 2002, 18 : 293 - 300
  • [36] Improved upper and lower bounds for the spectral radius of digraphs
    Gungor, A. Dilek
    Das, Kinkar Ch.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (03) : 791 - 799
  • [37] Spectral radius of non-negative matrices and digraphs
    Zhang, XD
    Li, JS
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (02) : 293 - 300
  • [38] Some sharp bounds for the spectral radius and energy of digraphs
    Liu, Min-Hui
    Tian, Gui-Xian
    Cui, Shu-Yu
    ARS COMBINATORIA, 2016, 127 : 45 - 55
  • [39] BOUNDS ON THE SPECTRAL RADIUS OF DIGRAPHS FROM SUBGRAPH COUNTS
    Chen, Ximing
    Ogura, Masaki
    Preciado, Victor M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (02) : 525 - 553
  • [40] ON THE DISTANCE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS AND DIGRAPHS
    Li, Dan
    Wang, Guoping
    Meng, Jixiang
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2017, 32 : 438 - 446