Semiparametric likelihood ratio inference

被引:1
|
作者
Murphy, SA
van der Vaart, AW
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[2] Free Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
来源
ANNALS OF STATISTICS | 1997年 / 25卷 / 04期
关键词
least favorable submodel; profile likelihood; confidence interval;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Likelihood ratio tests and related confidence intervals for a real parameter in the presence of an infinite dimensional nuisance parameter are considered. In all cases, the estimator of the real parameter has an asymptotic normal distribution. However, the estimator of the nuisance parameter may not be asymptotically Gaussian or may converge to the true parameter value at a slower rate than the square root of the sample size. Nevertheless the likelihood ratio statistic is shown to possess an asymptotic chi-squared distribution. The examples considered are tests concerning survival probabilities based on doubly censored data, a test for presence of heterogeneity in the gamma frailty model, a test for significance of the regression coefficient in Cox's regression model for current status data and a test for a ratio of hazards rates in an exponential mixture model. In both of the last examples the rate of convergence of the estimator of the nuisance parameter is less than the square root of the sample size.
引用
收藏
页码:1471 / 1509
页数:39
相关论文
共 50 条
  • [1] Semiparametric inference with kernel likelihood
    Yuan, Ao
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (02) : 207 - 228
  • [2] Semiparametric empirical likelihood inference with estimating equations under density ratio models
    Yuan, Meng
    Li, Pengfei
    Wu, Changbao
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 5321 - 5377
  • [3] LIKELIHOOD INFERENCE ON SEMIPARAMETRIC MODELS WITH GENERATED REGRESSORS
    Matsushita, Yukitoshi
    Otsu, Taisuke
    [J]. ECONOMETRIC THEORY, 2020, 36 (04) : 626 - 657
  • [4] Integrated likelihood inference in semiparametric regression models
    He, H.
    Severini, T. A.
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2014, 72 (02): : 185 - 199
  • [5] Semiparametric inference for transformation models via empirical likelihood
    Zhao, Yichuan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (08) : 1846 - 1858
  • [6] Semiparametric inference with a functional-form empirical likelihood
    Sixia Chen
    Jae Kwang Kim
    [J]. Journal of the Korean Statistical Society, 2014, 43 : 201 - 214
  • [7] Likelihood Inferences on Semiparametric Odds Ratio Model
    Chen, Hua Yun
    Rader, Daniel E.
    Li, Mingyao
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (511) : 1125 - 1135
  • [8] TWO-STEP SEMIPARAMETRIC EMPIRICAL LIKELIHOOD INFERENCE
    Bravo, Francesco
    Carlos Escanciano, Juan
    Van Keilegom, Ingrid
    [J]. ANNALS OF STATISTICS, 2020, 48 (01): : 1 - 26
  • [9] Empirical likelihood inference for a semiparametric hazards regression model
    Chen, Wei
    Wang, Dehui
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (11) : 3236 - 3248
  • [10] Semiparametric inference with a functional-form empirical likelihood
    Chen, Sixia
    Kim, Jae Kwang
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (02) : 201 - 214