Adaptive sliding mode synchronisation for fractional-order non-linear systems in the presence of time-varying actuator faults

被引:35
|
作者
Bataghva, Meysam [1 ]
Hashemi, Mahnaz [1 ,2 ]
机构
[1] Islamic Azad Univ, Najafabad Branch, Dept Elect Engn, Najafabad, Isfahan, Iran
[2] Islamic Azad Univ, Najafabad Branch, Smart Microgrid Res Ctr, Najafabad, Isfahan, Iran
来源
IET CONTROL THEORY AND APPLICATIONS | 2018年 / 12卷 / 03期
关键词
TOLERANT CONTROL; FAILURE COMPENSATION; ROBUST; TRACKING;
D O I
10.1049/iet-cta.2017.0458
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study presents an adaptive sliding mode synchronisation scheme for a class of fractional-order non-linear systems in the presence of unknown parameters, actuator faults, and disturbances. The designed adaptive controller compensates a general class of actuator faults without the need for any explicit fault detection. The parameters, times, and patterns of the considered faults are completely unknown. The proposed adaptive sliding mode synchronisation scheme can guarantee the asymptotic convergence of the synchronisation error to the origin despite the presence of actuator faults and uncertainties. The simulation results show the correctness and effectiveness of the proposed adaptive sliding mode fault compensation approach.
引用
收藏
页码:377 / 383
页数:7
相关论文
共 50 条
  • [31] Sliding mode control of a class of uncertain nonlinear fractional-order time-varying delayed systems based on Razumikhin approach
    Ghamgosar, Mohammad
    Mirhosseini-Alizamini, Seyed Mehdi
    Dadkhah, Mahmood
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2022, 10 (04): : 860 - 875
  • [32] Fractional-Order Sliding Mode Load Frequency Control and Stability Analysis for Interconnected Power Systems With Time-Varying Delay
    Yang, Fan
    Shen, Yanbo
    Li, Dongdong
    Lin, Shunfu
    Muyeen, S. M.
    Zhai, Haibao
    Zhao, Jian
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (01) : 1006 - 1018
  • [33] Adaptive fuzzy finite-time backstepping control of fractional-order nonlinear systems with actuator faults via command-filtering and sliding mode technique
    Xue, Guangming
    Lin, Funing
    Li, Shenggang
    Liu, Heng
    INFORMATION SCIENCES, 2022, 600 : 189 - 208
  • [34] New fractional-order integral inequalities: Application to fractional-order systems with time-varying delay
    Hu, Taotao
    He, Zheng
    Zhang, Xiaojun
    Zhong, Shouming
    Yao, Xueqi
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2021, 358 (07): : 3847 - 3867
  • [35] Adaptive Sliding Mode Control for Multi-agent Time-varying Formation Tracking with Dynamic Actuator Faults
    Guan, Renhe
    Sun, Chao
    Hu, Guoqiang
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 470 - 475
  • [36] Guaranteed cost control of fractional-order linear uncertain systems with time-varying delay
    Chen, Liping
    Wu, Ranchao
    Yuan, Liguo
    Yin, Lisheng
    Chen, YangQuan
    Xu, Shuiqing
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2021, 42 (04): : 1102 - 1118
  • [37] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [38] Finite-time fractional-order adaptive intelligent backstepping sliding mode control of uncertain fractional-order chaotic systems
    Bigdeli, Nooshin
    Ziazi, Hossein Alinia
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (01): : 160 - 183
  • [39] Stabilization of Non-Linear Fractional-Order Uncertain Systems
    Ji, Yude
    Du, Mingxing
    Guo, Yanping
    ASIAN JOURNAL OF CONTROL, 2018, 20 (02) : 669 - 677
  • [40] Stability of fractional-order switched non-linear systems
    Yang, Hao
    Jiang, Bin
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (08): : 965 - 970