Power-electronic control and modeling have gone through fundamental shift in its approach with time slowly but surely replacing reduced-order-manifold-based approaches proposed decades back. With the revolution in embedded processors and advancements in multi-objective optimization, stability theory, hybrid systems, and communication/information theory, radically new multi-scale spatio-temporal approaches are being developed and implemented that are showing unprecedented promise for plurality of power-electronic applications and changing the mindset regarding the control and modeling of such hybrid dynamical switching-power systems. At the actuation level, the advent of rapid switching wide-bandgap devices is enabling the accelerated penetration of such next-generation controls across plurality of voltage and power levels encompassing radically improved, new, and complex power-electronic systems. This keynote will begin with an outline on the role of control in traditional power-electronic systems and networks and how they shape the behavior of such hybrid dynamical systems. Subsequently, an overview of the traditional power-electronic control, analysis, and modeling approaches will be provided along with brief discussions on their strengths and limitations. That leads to the future of controls in power electronics and what should and could be done beyond traditional power-electronic control that addresses existing, evolving, and future applications needs encompassing wide temporal and spatial scales? This talk will provide some insights on how and what radically new ideas may need to be synthesized that reach far beyond historical and conventional power-electronic control needs with wide power-conversion applications.