Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet

被引:18
|
作者
Yu, Yangyang [1 ,2 ]
Madhukesh, Javali K. [3 ]
Khan, Umair [4 ,5 ]
Zaib, Aurang [6 ]
Abdel-Aty, Abdel-Haleem [7 ,8 ]
Yahia, Ibrahim S. [9 ,10 ,11 ]
Alqahtani, Mohammed S. [12 ,13 ]
Wang, Fuzhang [1 ,2 ]
Galal, Ahmed M. [14 ,15 ]
机构
[1] Xuzhou Univ Technol, Sch Math & Stat, Xuzhou 221018, Jiangsu, Peoples R China
[2] Nanchang Inst Technol, Dept Math, Nanchang 330044, Jiangxi, Peoples R China
[3] Davangere Univ, Dept Math, Davangere 577002, India
[4] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, UKM, Bangi 43600, Malaysia
[5] Sukkur IBA Univ, Dept Math & Social Sci, Sukkur 65200, Pakistan
[6] Fed Urdu Univ Arts Sci & Technol, Dept Math Sci, Gulshan E Iqbal Karachi 75300, Pakistan
[7] Univ Bisha, Coll Sci, Dept Phys, POB 344, Bisha 61922, Saudi Arabia
[8] Al Azhar Univ, Fac Sci, Phys Dept, Assiut 71524, Egypt
[9] King Khalid Univ, Fac Sci, Dept Phys, Lab Nanosmart Mat Sci & Technol LNSMST, POB 9004, Abha 61413, Saudi Arabia
[10] King Khalid Univ, Res Ctr Adv Mat Sci RCAMS, POB 9004, Abha 61413, Saudi Arabia
[11] Ain Shams Univ, Fac Educ, Dept Phys, Met Lab 1,Nanosci Lab Environm & Biomed Applicat, Cairo 11757, Egypt
[12] King Khalid Univ, Coll Appl Med Sci, Radiol Sci Dept, POB 9004, Abha 61421, Saudi Arabia
[13] Univ Leicester, Space Res Ctr, Biolmaging Unit, Michael Atiyah Bldg, Leicester LE1 7RH, Leics, England
[14] Prince Sattam Bin Abdulaziz Univ, Coll Engn, Mech Engn Dept, Wadiaddawaser 11991, Saudi Arabia
[15] Mansoura Univ, Fac Engn, Prod Engn & Mech Design Dept, Mansoura 35516, Egypt
基金
中国国家自然科学基金;
关键词
micropolar nanofluid; nanoparticle aggregation; heat source; sink; thermophoretic particle deposition; bioconvection; NANOLIQUID; CONVECTION; FLUID;
D O I
10.3390/nano12060977
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The purpose of this research is to investigate the consequence of thermophoretic particle deposition (TPD) on the movement of a TiO2/water-based micropolar nanoliquid surface in the existence of a porous medium, a heat source/sink, and bioconvection. Movement, temperature, and mass transfer measurements are also performed in the attendance and nonappearance of nanoparticle aggregation. The nonlinear partial differential equations are transformed into a system of ordinary differential equations using appropriate similarity factors, and numerical research is carried out using the Runge-Kutta-Felhberg 4th/5th order and shooting technique. The obtained results show that improved values of the porous constraint will decline the velocity profile. Improvement in heat source/sink parameter directly affects the temperature profile. Thermophoretic parameter, bioconvection Peclet number, and Lewis number decrease the concentration and bioconvection profiles. Increases in the heat source/sink constraint and solid volume fraction will advance the rate of thermal dispersion. Nanoparticle with aggregation exhibits less impact in case of velocity profile, but shows a greater impact on temperature, concentration, and bioconvection profiles.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet
    Latiff, Nur Amalina Abdul
    Uddin, Md Jashim
    Beg, O. Anwar
    Ismail, Ahmad Izani
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART N-JOURNAL OF NANOMATERIALS NANOENGINEERING AND NANOSYSTEMS, 2016, 230 (04) : 177 - 187
  • [42] Micropolar flow over a porous stretching sheet with strong suction or injection
    Kelson, NA
    Farrell, TW
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2001, 28 (04) : 479 - 488
  • [43] Impact of thermophoretic particle deposition on Glauert wall jet slip flow of nanofluid
    Alhadhrami, A.
    Alzahrani, Hassan A.H.
    Naveen Kumar, R.
    Punith Gowda, R.J.
    Sarada, Konduru
    Prasanna, B.M.
    Madhukesh, J.K.
    Madhukeshwara, N.
    Case Studies in Thermal Engineering, 2021, 28
  • [44] Free convective flow of micropolar nanofluid over a heated stretching sheet with the impact of dissipative heat and binary chemical reactions
    Nayak, Krushna K. P. N.
    Dash, A. K.
    Mishra, S. R.
    Panda, Subhajit
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (22) : 13255 - 13265
  • [45] Numerical computation of buoyancy and radiation effects on MHD micropolar nanofluid flow over a stretching/shrinking sheet with heat source
    Rehman, Saif Ur
    Mariam, Amna
    Ullah, Asmat
    Asjad, Muhammad Imran
    Bajuri, Mohd Yazid
    Pansera, Bruno A.
    Ahmadian, Ali
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 25
  • [46] Innovation of prescribe conditions for radiative Casson micropolar hybrid nanofluid flow with inclined MHD over a stretching sheet/cylinder
    Abbas, Nadeem
    Shatanawi, Wasfi
    Shatnawi, Taqi A. M.
    AIMS MATHEMATICS, 2025, 10 (02): : 3561 - 3580
  • [47] Model-based analysis of micropolar nanofluid flow over a stretching surface
    S. T. Hussain
    Sohail Nadeem
    Rizwan Ul Haq
    The European Physical Journal Plus, 129
  • [48] Model-based analysis of micropolar nanofluid flow over a stretching surface
    Hussain, S. T.
    Nadeem, Sohail
    Ul Haq, Rizwan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (08):
  • [49] Investigation of MHD radiative casson micropolar hybrid nanofluid over exponential curved stretching sheet
    Abbas, Nadeem
    Shatanawi, Wasfi
    Hasan, Fady
    Shatnawi, Taqi A. M.
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2025, 18 (01)
  • [50] The Impact of Cattaneo-Christov Double Diffusion on Oldroyd-B Fluid Flow over a Stretching Sheet with Thermophoretic Particle Deposition and Relaxation Chemical Reaction
    Shankaralingappa, Bheemasandra M.
    Prasannakumara, Ballajja C.
    Gireesha, Bijjanal J.
    Sarris, Ioannis E.
    INVENTIONS, 2021, 6 (04)