A Corrector for the Sample Mahalanobis Distance Free from Estimating the Population Eigenvalues of Covariance Matrix

被引:2
|
作者
Kobayashi, Yasuyuki [1 ]
机构
[1] Teikyo Univ, Fac Sci & Engn, Utsunomiya, Tochigi, Japan
关键词
Mahalanobis distance; Stein's estimator; Delta method;
D O I
10.1007/978-3-319-46672-9_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To correct the effect deteriorating the recognition performance of the sample Mahalanobis distance by a small number of learning sample, a new corrector for the sample Mahalanobis distance toward the corresponding population Mahalanobis distance is proposed without the population eigenvalues estimated from the sample covariance matrix defining the sample Mahalanobis distance. To omit computing the population eigenvalues difficult to estimate, the corrector uses the Stein's estimator of covariance matrix. And the corrector also uses accurate expectation of the principal component of the sample Mahalanobis distance by the delta method in statistics. Numerical experiments show that the proposed corrector improves the probability distribution and the recognition performance in comparison with the sample Mahalanobis distance.
引用
收藏
页码:224 / 232
页数:9
相关论文
共 50 条
  • [1] Improved method for correcting sample Mahalanobis distance without estimating population eigenvalues or eigenvectors of covariance matrix
    Kobayashi, Yasuyuki
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2020, 10 (02) : 121 - 134
  • [2] Improved method for correcting sample Mahalanobis distance without estimating population eigenvalues or eigenvectors of covariance matrix
    Yasuyuki Kobayashi
    International Journal of Data Science and Analytics, 2020, 10 : 121 - 134
  • [3] On the Bias in Eigenvalues of Sample Covariance Matrix
    Hayashi, Kentaro
    Yuan, Ke-Hai
    Liang, Lu
    QUANTITATIVE PSYCHOLOGY, 2018, 233 : 221 - 233
  • [4] Eigenvalues of the sample covariance matrix for a towed array
    Gerstoft, Peter
    Menon, Ravishankar
    Hodgkiss, William S.
    Mecklenbraeuker, Christoph F.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 132 (04): : 2388 - 2396
  • [5] Extremal eigenvalues of sample covariance matrices with general population
    Kwak, Jinwoong
    Lee, Ji Oon
    Park, Jaewhi
    BERNOULLI, 2021, 27 (04) : 2740 - 2765
  • [6] A better approximation of moments of the eigenvalues and eigenvectors of the sample covariance matrix
    Enguix-Gonzalez, A.
    Moreno-Rebollo, J. L.
    Munoz-Pichardo, J. M.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 142 : 133 - 143
  • [7] Sample Covariance Matrix Eigenvalues Based Blind SNR Estimation
    Hamid, Mohamed
    Bjorsell, Niclas
    Ben Slimane, Slimane
    2014 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC) PROCEEDINGS, 2014, : 718 - 722
  • [8] A CFAR Detector for Mismatched Eigenvalues of Training Sample Covariance Matrix
    Raghavan, R. S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (17) : 4624 - 4635
  • [9] Proposed Model for Facial Animation using Covariance Matrix and Mahalanobis Distance Algorithms
    Sayed, Mehran
    Bhatti, Zeeshan
    Ismaili, Imdad Ali
    2019 2ND INTERNATIONAL CONFERENCE ON COMPUTING, MATHEMATICS AND ENGINEERING TECHNOLOGIES (ICOMET), 2019,
  • [10] Eigenvalues of large sample covariance matrices of spiked population models
    Baik, Jinho
    Silverstein, Jack W.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (06) : 1382 - 1408