GAMMA-RAY BURSTS FROM MAGNETIZED COLLISIONALLY HEATED JETS

被引:107
|
作者
Vurm, Indrek [1 ,2 ,3 ]
Beloborodov, Andrei M. [4 ,5 ,6 ]
Poutanen, Juri [3 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[2] Tartu Astrophys Observ, EE-61602 Toravere, Tartumaa, Estonia
[3] Univ Oulu, Astron Div, Dept Phys, Oulu 90014, Finland
[4] Columbia Univ, Dept Phys, New York, NY 10027 USA
[5] Ctr Astrospace, Lebedev Phys Inst, Moscow 117810, Russia
[6] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA
来源
ASTROPHYSICAL JOURNAL | 2011年 / 738卷 / 01期
基金
欧洲研究理事会; 芬兰科学院; 美国国家科学基金会;
关键词
gamma-ray burst: general; gamma rays: general; radiation mechanisms: non-thermal; ACCRETING BLACK-HOLES; PARTICLE-ACCELERATION; FERMI OBSERVATIONS; GEV NEUTRINOS; EMISSION; FIREBALLS; SPECTRA; GRB; RADIATION; PROMPT;
D O I
10.1088/0004-637X/738/1/77
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Jets producing gamma-ray bursts (GRBs) are likely to carry a neutron component that drifts with respect to the proton component. The neutron-proton collisions strongly heat the jet and generate electron-positron pairs. We investigate radiation produced by this heating using a new numerical code. Our results confirm the recent claim that collisional heating generates the observed Band-type spectrum of GRBs. We extend the model to study the effects of magnetic fields on the emitted spectrum. We find that the spectrum peak remains near 1 MeV for the entire range of the magnetization parameter 0 < epsilon(B) < 2 that is explored in our simulations. The low-energy part of the spectrum softens with increasing epsilon(B), and a visible soft excess appears in the keV band. The high-energy part of the spectrum extends well above the GeV range and can contribute to the prompt emission observed by Fermi/LAT. Overall, the radiation spectrum created by the collisional mechanism appears to agree with observations, with no fine tuning of parameters.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] EPISODIC JETS AS THE CENTRAL ENGINE OF GAMMA-RAY BURSTS
    Yuan, Feng
    Zhang, Bing
    [J]. ASTROPHYSICAL JOURNAL, 2012, 757 (01):
  • [22] Rarefaction acceleration in magnetized gamma-ray burst jets
    Sapountzis, Konstantinos
    Vlahakis, Nektarios
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 434 (02) : 1779 - 1788
  • [23] NEUTRINO BURSTS FROM GAMMA-RAY BURSTS
    PACZYNSKI, B
    XU, GH
    [J]. ASTROPHYSICAL JOURNAL, 1994, 427 (02): : 708 - 713
  • [24] Special gamma-ray bursts and special radiation components from gamma-ray bursts
    Li Bing
    Sun Hui
    Wang LingJun
    Wei JunJie
    Huang YongFeng
    Li Lixin
    Li Zhuo
    Liang Enwei
    Wu XueFeng
    [J]. SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2018, 48 (03)
  • [25] Multi-GeV neutrino emission from magnetized gamma-ray bursts
    Gao, Shan
    Meszaros, Peter
    [J]. PHYSICAL REVIEW D, 2012, 85 (10):
  • [26] ESCAPE OF BEAMED EMISSION FROM GAMMA-RAY BURSTS ON MAGNETIZED NEUTRON STARS
    HO, C
    EPSTEIN, RI
    FENIMORE, EE
    [J]. ASTROPHYSICAL JOURNAL, 1990, 348 (01): : L25 - L28
  • [27] The propagation and eruption of relativistic jets from the stellar progenitors of gamma-ray bursts
    Zhang, WQ
    Woosley, SE
    Heger, A
    [J]. ASTROPHYSICAL JOURNAL, 2004, 608 (01): : 365 - 377
  • [28] Gamma-ray bursts: polarization of afterglows from two-component jets
    Wu, XF
    Dai, ZG
    Huang, YF
    Lu, T
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 357 (04) : 1197 - 1204
  • [29] Gamma-ray bursts via the neutrino emission from heated neutron stars
    Salmonson, JD
    Wilson, JR
    Mathews, GJ
    [J]. ASTROPHYSICAL JOURNAL, 2001, 553 (02): : 471 - 487
  • [30] Are gamma-ray bursts due to isotropic fireballs or cylindrical jets?
    Huang, YF
    Tan, CY
    Dai, ZG
    Lu, T
    [J]. CHINESE ASTRONOMY AND ASTROPHYSICS, 2002, 26 (04) : 414 - 423