GAMMA-RAY BURSTS FROM MAGNETIZED COLLISIONALLY HEATED JETS

被引:107
|
作者
Vurm, Indrek [1 ,2 ,3 ]
Beloborodov, Andrei M. [4 ,5 ,6 ]
Poutanen, Juri [3 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[2] Tartu Astrophys Observ, EE-61602 Toravere, Tartumaa, Estonia
[3] Univ Oulu, Astron Div, Dept Phys, Oulu 90014, Finland
[4] Columbia Univ, Dept Phys, New York, NY 10027 USA
[5] Ctr Astrospace, Lebedev Phys Inst, Moscow 117810, Russia
[6] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA
来源
ASTROPHYSICAL JOURNAL | 2011年 / 738卷 / 01期
基金
欧洲研究理事会; 芬兰科学院; 美国国家科学基金会;
关键词
gamma-ray burst: general; gamma rays: general; radiation mechanisms: non-thermal; ACCRETING BLACK-HOLES; PARTICLE-ACCELERATION; FERMI OBSERVATIONS; GEV NEUTRINOS; EMISSION; FIREBALLS; SPECTRA; GRB; RADIATION; PROMPT;
D O I
10.1088/0004-637X/738/1/77
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Jets producing gamma-ray bursts (GRBs) are likely to carry a neutron component that drifts with respect to the proton component. The neutron-proton collisions strongly heat the jet and generate electron-positron pairs. We investigate radiation produced by this heating using a new numerical code. Our results confirm the recent claim that collisional heating generates the observed Band-type spectrum of GRBs. We extend the model to study the effects of magnetic fields on the emitted spectrum. We find that the spectrum peak remains near 1 MeV for the entire range of the magnetization parameter 0 < epsilon(B) < 2 that is explored in our simulations. The low-energy part of the spectrum softens with increasing epsilon(B), and a visible soft excess appears in the keV band. The high-energy part of the spectrum extends well above the GeV range and can contribute to the prompt emission observed by Fermi/LAT. Overall, the radiation spectrum created by the collisional mechanism appears to agree with observations, with no fine tuning of parameters.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Detection Prospects for GeV Neutrinos from Collisionally Heated Gamma-ray Bursts with IceCube/DeepCore
    Bartos, I.
    Beloborodov, A. M.
    Hurley, K.
    Marka, S.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (24)
  • [2] Jets in gamma-ray bursts
    Sari, R
    Piran, T
    Halpern, JP
    [J]. ASTROPHYSICAL JOURNAL, 1999, 519 (01): : L17 - L20
  • [3] JETS AND WINDS FROM GAMMA-RAY BURSTS
    Janiuk, Agnieszka
    [J]. ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2022, 15 (03)
  • [4] Beaming and jets in gamma-ray bursts
    Sari, R
    [J]. GAMMA-RAY BURSTS, 2000, 526 : 504 - 513
  • [5] Gamma-Ray bursts: jets and energetics
    Frail, DA
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 132 : 255 - 262
  • [6] Relativistic jets from collapsars: Gamma-ray bursts
    Zhang, WQ
    Woosley, SE
    [J]. 3D STELLAR EVOLUTION, 2003, 293 : 321 - 328
  • [7] Gamma-ray bursts: afterglows from cylindrical jets
    Cheng, KS
    Huang, YF
    Lu, T
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 325 (02) : 599 - 606
  • [8] GeV EMISSION FROM COLLISIONAL MAGNETIZED GAMMA-RAY BURSTS
    Meszaros, P.
    Rees, M. J.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2011, 733 (02)
  • [9] The physics of gamma-ray bursts & relativistic jets
    Kumar, Pawan
    Zhang, Bing
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2015, 561 : 1 - 109
  • [10] Simulations of Gamma-Ray Emission from Magnetized Microquasar Jets
    Kosmas, Odysseas
    Smponias, Theodoros
    [J]. ADVANCES IN HIGH ENERGY PHYSICS, 2018, 2018