Analysis of a stabilized finite element method for fluid flows through a porous interface

被引:2
|
作者
Caiazzo, Alfonso [1 ,2 ]
Fernandez, Miguel A. [2 ]
Martin, Vincent [2 ,3 ]
机构
[1] Weierstr Inst, D-10117 Berlin, Germany
[2] INRIA Paris Rocquencourt, F-78153 Le Chesnay, France
[3] LMAC, UTC, F-60205 Compiegne, France
关键词
Stokes equation; Porous interface; Stabilized finite element method; STOKES;
D O I
10.1016/j.aml.2011.06.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to the numerical simulation of an incompressible fluid through a porous interface, modeled as a macroscopic resistive interface term in the Stokes equations. We improve the results reported in [M.A. Fernandez, J.-F. Gerbeau, V. Martin, Numerical simulation of blood flows through a porous interface, Math. Model. Num. Anal. (M2AN) 42 (6) (2008) 961-990], by showing that the standard Pressure Stabilized Petrov-Galerkin (PSPG) finite element method is stable, and optimally convergent, without the need for controlling the pressure jump across the interface. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2124 / 2127
页数:4
相关论文
共 50 条
  • [1] Stabilized finite element method for the viscoelastic Oldroyd fluid flows
    Kun Wang
    Zhiyong Si
    Yanfang Yang
    [J]. Numerical Algorithms, 2012, 60 : 75 - 100
  • [2] Stabilized finite element method for the viscoelastic Oldroyd fluid flows
    Wang, Kun
    Si, Zhiyong
    Yang, Yanfang
    [J]. NUMERICAL ALGORITHMS, 2012, 60 (01) : 75 - 100
  • [3] Stabilized Finite Element Method for Compressible-Incompressible Interface Flows
    Billaud, Marie
    Gallice, Gerard
    Nkonga, Boniface
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1351 - +
  • [4] A stabilized finite element method for rotating flows
    Codina, R
    Soto, O
    [J]. COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 736 - 741
  • [5] ANALYSIS OF A HYBRIDIZED/INTERFACE STABILIZED FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS
    Rhebergen, Sander
    Wells, Garth N.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) : 1982 - 2003
  • [6] On a Finite Element method for the polymeric fluid flows
    Sandri, D
    [J]. COMPTES RENDUS MATHEMATIQUE, 2003, 336 (08) : 687 - 690
  • [7] A stabilized finite element method for global analysis of convective instabilities in nonparallel flows
    Mittal, Sanjay
    Kumar, Bhaskar
    [J]. PHYSICS OF FLUIDS, 2007, 19 (08)
  • [8] PROJECTION SCHEMES FOR FLUID FLOWS THROUGH A POROUS INTERFACE
    Caiazzo, Alfonso
    Fernandez, Miguel A.
    Gerbeau, Jean-Frederic
    Martin, Vincent
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02): : 541 - 564
  • [9] A stabilized finite element method for generalized stationary incompressible flows
    Codina, R
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (20-21) : 2681 - 2706
  • [10] Stabilized finite element method for flows with multiple reference frames
    Pauli, L.
    Both, J. W.
    Behr, M.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 78 (11) : 657 - 669