Stabilized finite element method for flows with multiple reference frames

被引:10
|
作者
Pauli, L. [1 ]
Both, J. W. [1 ]
Behr, M. [1 ]
机构
[1] Rhein Westfal TH Aachen, Chair Computat Anal Tech Syst CATS, D-52056 Aachen, Germany
关键词
rotating components; frozen rotor; stirred-tank; turbomachinery; COMPUTATIONAL FLUID-DYNAMICS; SPACE-TIME PROCEDURE; MOVING BOUNDARIES; FORMULATION; INTERFACES; STRATEGY; CFD;
D O I
10.1002/fld.4032
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a space-time finite element method capable of dealing with flows in multiple co-rotating reference frames. Since equal order interpolation is used for all degrees of freedom, Galerkin/least-squares stabilization is applied. We give a detailed derivation of the equations involved, introduce the variational form, present the stabilization parameters, and also discuss implementation issues. Numerical examples in 2D and 3D show generality and efficiency of the method, if steady-state behavior of rotating components is sufficient for the CFD analysis. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:657 / 669
页数:13
相关论文
共 50 条
  • [1] A stabilized finite element method for rotating flows
    Codina, R
    Soto, O
    [J]. COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 736 - 741
  • [2] Stabilized finite element method for the viscoelastic Oldroyd fluid flows
    Kun Wang
    Zhiyong Si
    Yanfang Yang
    [J]. Numerical Algorithms, 2012, 60 : 75 - 100
  • [3] Stabilized finite element method for the viscoelastic Oldroyd fluid flows
    Wang, Kun
    Si, Zhiyong
    Yang, Yanfang
    [J]. NUMERICAL ALGORITHMS, 2012, 60 (01) : 75 - 100
  • [4] A stabilized finite element method for generalized stationary incompressible flows
    Codina, R
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (20-21) : 2681 - 2706
  • [5] Stabilized Finite Element Method for Compressible-Incompressible Diphasic Flows
    Billaud, M.
    Gallice, G.
    Nkonga, B.
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 171 - 179
  • [6] A Two-Parameter Stabilized Finite Element Method for Incompressible Flows
    Shang, Yueqiang
    Qin, Jin
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (02) : 425 - 444
  • [7] A stabilized finite element method to compute transient shallow water flows
    Hauke, G
    [J]. HYDROINFORMATICS '98, VOLS 1 AND 2, 1998, : 105 - 112
  • [8] Stabilized finite element method for incompressible flows with high Reynolds number
    Hachem, E.
    Rivaux, B.
    Kloczko, T.
    Digonnet, H.
    Coupez, T.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (23) : 8643 - 8665
  • [9] Stabilized Finite Element Method for Compressible-Incompressible Interface Flows
    Billaud, Marie
    Gallice, Gerard
    Nkonga, Boniface
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1351 - +
  • [10] A stabilized finite element method based on SGS models for compressible flows
    Rispoli, Franco
    Saavedra, Rafael
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 196 (1-3) : 652 - 664